Abstract
The preceding manuscript describes the principles behind the Interactive Watershed Transform (IWT) segmentation tool. The purpose of this manuscript is to illustrate the clinical utility of this editing technique for body multidetector row computed tomography (MDCT) imaging. A series of cases demonstrates clinical applications where automated segmentation of skeletal structures with IWT is most useful. Both CT angiography and orthopedic applications are presented.
This is a preview of subscription content,
to check access.












References
Raman R, Raman B, Hundt W, Stucker D, Napel S, Rubin GD: Improved speed of bone removal in CT angiography (CTA) using automated targeted morphological separation: method and evaluation in CTA of lower extremity occlusive disease (LEOD). Radiology 225(P):647, 2002
Alyassin AM, Avinash GB: Semiautomated bone removal technique from CT angiography data. Proc SPIE (Medical imaging: Image Processing) 4322:1273–1283, 2001
Fiebich M, Straus CM, Sehgal V, Renger BC, Doi K, Hoffmann KR: Automatic bone segmentation technique for CT angiographic studies. J Comput Assist Tomogr 23:155–161, 1999
Mullick R, Avila RS, Platt J, Mallya Y, Senzig R, Knoplioch J: Automatic bone removal for abdomen CTA: a clinical review. Radiology 225(P):646, 2002
Suryanarayanan S, Mullick R, Mallya Y, Wood CP, McCullough C, Thielen KR: Automatic bone removal for head CTA: a preliminary review. In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, IL: Radiological Society of North America, 2003; 648.
Moore EA, Grieve JP, Jager HR: Robust processing of intracranial CT angiograms for 3D volume rendering. Eur Radiol 11:137–141, 2001
Kang Y, Engelke K, Kalender WA: A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imag 22:586–598, 2003
Hahn HK, Peitgen HO: IWT-Interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray scale images. Proc SPIE (Medical Imaging: Image Processing) 5032:643–653, 2003
Hahn HK, Wenzel MT, Drexl J, Zentis S, Peitgen H-O: Hybrid watershed transform: optimal combination of hierarchical interactive and automated image segmentation. Proc SPIE (Medical Imaging: Image Processing) 6512:6512OZ, Published online March 3, 2007.
Hahn HK, Wenzel MT, Konrad-Verse O, Peitgen HO: A minimally-interactive watershed algorithm designed for efficient CTA bone removal. Computer Vision Approaches to Medical Image Analysis 2006; 4241:178–189.
Hahn HK: Morphological volumetry—Theory, Concepts, and Application to Quantitative Medical Imaging. Ph.D. thesis; University of Bremen, Jan 2005. http://www.mevis-research.de/∼hahn/download/thesis/HorstHahn-PhDThesis-2005.pdf
Sebastian TB, Tek H, Crisco JJ, Kimia BB: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med Image Anal 7:21–45, 2003
Wang LI, Greenspan M, Ellis R: Validation of bone segmentation and improved 3-D registration using contour coherency in CT data. IEEE Trans Med Imag 25:324–334, 2006
Zoroofi RA, Sato Y, Sasama T et al: Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans Inf Technol Biomed 7:329–343, 2003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Johnson, P.T., Hahn, H.K., Heath, D.G. et al. Automated Multidetector Row CT Dataset Segmentation with an Interactive Watershed Transform (IWT) Algorithm: Part 2—Body CT Angiographic and Orthopedic Applications. J Digit Imaging 21, 413–421 (2008). https://doi.org/10.1007/s10278-007-9087-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-007-9087-7