Skip to main content

Localizing Calcifications in Cardiac CT Data Sets Using a New Vessel Segmentation Approach

The new generation of multislice computed tomography (CT) scanners allows for the acquisition of high-resolution images of the heart. Based on that image data, the heart can be analyzed in a noninvasive way—improving the diagnosis of cardiovascular malfunctions on one hand, and the planning of an eventually necessary intervention on the other. One important parameter for the evaluation of the severeness of a coronary artery disease is the number and localization of calcifications (hard plaques). This work presents a method for localizing these calcifications by employing a newly developed vessel segmentation approach. This extraction technique has been developed for, and tested with, contrast-enhanced CT data sets of the heart. The algorithm provides enough information to compute the vessel diameter along the extracted segment. An approach for automatically detecting calcified regions that combines diameter information and gray value analysis is presented. In addition, specially adapted methods for the visualization of these analysis results are described.

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6


  1. World Health Organization 2005, web:

  2. Siemens: Somatom Sensation 64.

  3. GE: LightSpeed VCT.

  4. Toshiba: Aquilion 64.

  5. Philips: Brilliance CT 64-channel.

  6. The Visualization Toolkit by Kitware, Inc.(


  1. AV Rao (2002) ArticleTitleLycopene, tomatoes, and the prevention of coronary heart disease Exp Biol Med 227 908–913 Occurrence Handle1:CAS:528:DC%2BD38Xos1ynsrw%3D

    CAS  Google Scholar 

  2. JM Schussler WD Dockery TR Moore KB Johnson RL Rosenthal RC Stoler (2005) ArticleTitleComputed tomographic coronary angiography: experience at Baylor University Medical Center/Baylor Jack and Jane Hamilton Heart and Vascular Hospital Proc Bayl Univ Med Cent 18 228–233 Occurrence Handle16200178

    PubMed  Google Scholar 

  3. AS Agatston WR Janowitz FJ Hildner NR Zusmer M Viamonte R Detrano (1990) ArticleTitleQuantification of coronary artery calcium using ultrafast computed tomography J Am Coll Cardiol 15 827–832 Occurrence Handle2407762 Occurrence Handle1:STN:280:DyaK3c7ntFelug%3D%3D Occurrence Handle10.1016/0735-1097(90)90282-T

    PubMed  CAS  Article  Google Scholar 

  4. CR Becker A Knez TF Jakobs S Aydemir A Becker UJ Schoepf R Bruening R Haberl MF Reiser (1999) ArticleTitleDetection and quantification of coronary artery calcification with electron-beam and conventional CT Eur Radiol 9 620–624 Occurrence Handle10354872 Occurrence Handle1:STN:280:DyaK1M3otlaquw%3D%3D Occurrence Handle10.1007/s003300050720

    PubMed  CAS  Article  Google Scholar 

  5. TQ Callister B Cooil SP Raya NJ Lippolis DJ Russo P Raggi (1998) ArticleTitleCoronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method Radiology 208 807–814 Occurrence Handle9722864 Occurrence Handle1:STN:280:DyaK1czptVSrug%3D%3D

    PubMed  CAS  Google Scholar 

  6. Ohnesorge B, Flohr T.: Non-invasive cardiac imaging with fast multi-slice cardio CT. Electromedica 68:1–10, 2000. Spec issue Cardiology, Siemens AG

    Google Scholar 

  7. K Taguchi H Anno (2000) ArticleTitleHigh temporal resolution for multislice helical computed tomography Med Phys 27 861–872 Occurrence Handle10841388 Occurrence Handle1:STN:280:DC%2BD3cvlvFykuw%3D%3D Occurrence Handle10.1118/1.598951

    PubMed  CAS  Article  Google Scholar 

  8. MF Khan C Herzog K Landenberger A Maataoui S Martens H Ackermann A Moritz TJ Vogl (2005) ArticleTitleVisualisation of non-invasive coronary by pass imaging: 4-row vs. 16-row multidetector computed tomography Eur Radiol 15 118–126 Occurrence Handle15490176 Occurrence Handle10.1007/s00330-004-2521-z

    PubMed  Article  Google Scholar 

  9. M Kachelriess WA Kalender (1998) ArticleTitleElectrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart Med Phys 25 2417–2431 Occurrence Handle9874836 Occurrence Handle1:STN:280:DyaK1M%2FptF2qtw%3D%3D Occurrence Handle10.1118/1.598453

    PubMed  CAS  Article  Google Scholar 

  10. G Wang S Zhao D Heuscher (2002) ArticleTitleA knowledge-based cone-beam x-ray CT algorithm for dynamic volumetric cardiac imaging Med Phys 29 1807–1822 Occurrence Handle12201428 Occurrence Handle10.1118/1.1494989

    PubMed  Article  Google Scholar 

  11. TC Gerber RS Kuzo N Karstaedt GE Lane RL Morin PF Sheedy RE Safford JL Blackshear JH Pietan (2002) ArticleTitleCurrent results and new developments of coronary angiography with use of contrast-enhanced computed tomography of the heart Mayo Clin Proc 77 55–71 Occurrence Handle11794459 Occurrence Handle10.4065/77.1.55

    PubMed  Article  Google Scholar 

  12. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ: Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054, American Heart Association, Inc. (2002)

    PubMed  Article  Google Scholar 

  13. E Traversi G Bertoli G Barazzoni M Baldi R Tramarin (2004) ArticleTitleNon-invasive coronary angiography with multislice computed tomography. Technology, methods, preliminary experience and prospects Ital Heart J 5 89–98 Occurrence Handle15086138

    PubMed  Google Scholar 

  14. M Dewey D Schnapauff M Laule A Lembcke AC Borges W Rutsch B Hamm P Rogalla (2004) ArticleTitleMultislice CT coronary angiography: evaluation of an automatic vessel detection tool Fortschr Rontgenstr 176 478–483 Occurrence Handle1:STN:280:DC%2BD2c7pt1Squg%3D%3D Occurrence Handle10.1055/s-2004-812991

    CAS  Article  Google Scholar 

  15. Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel WG, Achenbach, S: Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666, 2003. American Heart Association, Inc.

  16. Kirbas C, Quek KH: Vessel extraction techniques and algorithms: a survey. In: Bioinformatics and Bioengineering 2003. Proc. of the Third IEEE Symposium, 2003, pp 238–245

  17. Yoo, TS (ed.): Insight Into Images. Peters, Ltd., 2004

  18. Hennemuth A, Boskamp T, Fritz D, Kühnel C, Bock S, Rinck D, Scheuering M, Peitgen HO: One-click coronary tree segmentation in CT angiographic images. In: Lemke, HU (ed.) Computer Assisted Radiology and Surgery. Proc. Of the 19th CARS 2005, Elsevier, 2005, pp 317–321

  19. E Sorantin C Halmai B Erdöhely K Palágyi L Nyúl K Ollé B Geiger F Lindbichler G Friedrich K Kiesler (2002) ArticleTitleSpiral-CT-based assessment of tracheal stenoses using 3-D-skeletonization IEEE Trans Med Imag 21 263–273 Occurrence Handle10.1109/42.996344

    Article  Google Scholar 

  20. Verdonck B, Bloch I, Maître H, Vandermeulen D, Suetens P, Marchal G: Blood vessel segmentation and visualization in 3D MRand spiral CT angiography. In: Lemke, HU (ed.) Computer Assisted Radiology. Proc. of the CAR 1995, Springer, 1995, pp 177–182

  21. Wesarg S, Firle EA: Segmentation of vessels: the corkscrew algorithm. In: Robert, L, Galloway, JE (eds.) Medical Imaging Symposium 2004. Volume 5370 of Proc. of SPIE. 2004, pp 1609–1620

  22. D Fleischmann (2003) ArticleTitleHigh-concentration contrast media in MDCT angiography: principles and rationale Eur Radiol 13 IssueIDSuppl 3 39–43

    Google Scholar 

  23. T Flohr B Ohnesorge (2001) ArticleTitleHeart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart J Comput Assist Tomogr 25 907–923 Occurrence Handle11711804 Occurrence Handle1:STN:280:DC%2BD3MnmsFygtA%3D%3D Occurrence Handle10.1097/00004728-200111000-00014

    PubMed  CAS  Article  Google Scholar 

  24. Schroeder W, Martin K, Lorensen B: The Visualization Toolkit—An Object-Oriented Approach to 3D Graphics. 3rd edn. Kitware, Inc., 2002

Download references


This work has been partially funded by the German Federal Ministry of Education and Research (BMBF) project Medarpa (research grant 01IRA09B). We want to thank the Institute for Diagnostic and Interventional Radiology of the Johann Wolfgang Goethe University Frankfurt, Germany for providing us the cardiac CT data sets.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefan Wesarg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wesarg, S., Khan, M.F. & Firle, E.A. Localizing Calcifications in Cardiac CT Data Sets Using a New Vessel Segmentation Approach. J Digit Imaging 19, 249–257 (2006).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Key Words

  • Computed tomography
  • vessel segmentation
  • coronary arteries
  • calcification
  • image analysis
  • visualization