Journal of Digital Imaging

, Volume 15, Issue 1, pp 5–14 | Cite as

Irreversible Compression of Medical Images

Article

Abstract

The volume of data from medical imaging is growing at exponential rates, matching or exceeding the decline in the costs of digital data storage. While methods to reversibly compress image data do exist, current methods only achieve modest reductions in storage requirements. Irreversible compression can achieve substantially higher compression ratios without perceptible image degradation. These techniques are routinely applied in teleradiology, and often in Picture Archiving and Communications Systems. The practicing radiologist needs to understand how these compression techniques work and the nature of the degradation that occurs in order to optimize their medical practice. This paper describes the technology and artifacts commonly used in irreversible compression of medical images.

KEY WORDS

data compression wavelets JPEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karson TH, Chandra S, Morehead AJ, et al: JPEG compression of digital echocardiographic images: Impact on image quality. J Am Soc Echocardiography 8:306–318, 1995CrossRefGoogle Scholar
  2. 2.
    Wallace GK: The JPEG still picture compression standard. Comm of the ACM 34:30–44, 1991CrossRefGoogle Scholar
  3. 3.
    Gillespy T 3rd, Rowberg AH: Displaying radiologic images on personal computers: Image storage and compression - Part 2 [published erratum appears in J Digit Imaging 1994 2:60]. J Digi Imaging 7:1–12, 1994CrossRefGoogle Scholar
  4. 4.
    Manduca A: Interactive wavelet-based 2-D and 3-D image compression. Proc SPIE 1897:307–318, 1993CrossRefGoogle Scholar
  5. 5.
    Antonini M, Barlaud M, Mathieu P, et al: Image coding using wavelet transform. IEEE Trans Image Proc 1:205–220, 1992CrossRefGoogle Scholar
  6. 6.
    Villasensor J, Belzer B, Liao J: Wavelet filter evaluation for image compression. IEEE Trans Image Proc 4:1053–1060, 1995CrossRefGoogle Scholar
  7. 7.
    Shapiro JM: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Proc 41:3445–3462,1993CrossRefGoogle Scholar
  8. 8.
    Said A, Pearlman W: Image compression using the spatial-orientation tree, in IEEE Intl Symp on Circuits and Systems. Piscataway, NJ, IEEE Press, 1993, pp 279–282Google Scholar
  9. 9.
    Said A, Pearlman W: A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits and Systems for Video Technology 6:243–250, 1996CrossRefGoogle Scholar
  10. 10.
    Donoho DI, Johnstone IM: Ideal denoising in an orthonormal basis chosen from a library of bases. Comptes Rendus Acad Sci. 319:1317–1322, 1994Google Scholar
  11. 11.
    Erickson BJ, Manduca A, Persons KR, et al: Evaluation of irreversible compression of digitized PA chest radiographs. J Digit Imaging 10:97–102, 1997PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Savcenko V, Erickson BJ, Palisson PM, et al: Detection of subtle abnormalities on chest radiographs after irreversible compression. Radiology 206:609–616, 1998PubMedGoogle Scholar
  13. 13.
    Slone R, Foos D, Whiting B, et al: Assessment of visually lossless irreversible image compression: Comparison of three methods by using an image-comparison workstation. Radiology 215:543–553, 2000PubMedCrossRefGoogle Scholar
  14. 14.
    Persons KR, Palisson P, Manduca A, et al: An analytical look at the effects of compression on medical images. J Digit Imaging 10:60–66, 1997PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Erickson B, Campeau N, Huston J, et al: Effects of irreversible compression on Neuro CT and MR Images. American Society of NeuroRadiology, Atlanta, GA, Apr 38, 2000Google Scholar
  16. 16.
    Girod B: What’s wrong with mean-squared error? Watson A (ed): Digital Images and Human Vision (edl). Cambridge, MA, MIT Press, 1993, pp 207–220Google Scholar
  17. 17.
    Barren P: Evaluation of the effect of noise on subjective image quality. Proc SPIE 1991 1453:2–15, 1991CrossRefGoogle Scholar
  18. 18.
    Nill N, Bouzas B: Objective image quality measure derived from digital image power spectra. Optical Engineering 31:813–825, 1992CrossRefGoogle Scholar
  19. 19.
    Good W, Lattner S, Maitz G: Evaluation of image compression using plausible “non visually weighted” image fidelity measures. Proc SPIE 1996 2707:301–309, 1996CrossRefGoogle Scholar
  20. 20.
    Lattner S, Good W, Maitz G: Visually weighted assessment of image degradation resulting from image compression. Proc SPIE 1996 2707:507–518, 1996CrossRefGoogle Scholar
  21. 21.
    Ishigaki T, Sakuma S, Ikeda M, et al: Clinical evaluation of irreversible image compression: Analysis of chest imaging with computed radiography. Radiology 175:739–743, 1990PubMedGoogle Scholar
  22. 22.
    Goldberg MA, Gazelle GS, Boland GW, et al: Focal hepatic lesions: Effect of three-dimensional wavelet compression on detection at CT. Radiology 202:159–165, 1997PubMedGoogle Scholar
  23. 23.
    Clunie DA, Mitchell PJ, Howieson J, et al: Detection of discrete white matter lesions after irreversible compression of MR images. Am J Neuroradiol 16:1435–1440, 1995PubMedGoogle Scholar
  24. 24.
    Good WF, Maitz GS, Gur D: Joint photographic experts group (JPEG) compatible data compression of mammograms. J Digit Imaging 7:123–132, 1994PubMedCrossRefGoogle Scholar
  25. 25.
    Cosman PC, Gray RM, Olshen RA: Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc IEEE 82:919–932, 1994CrossRefGoogle Scholar
  26. 26.
    Elion JL, Whiting JS: Clinical use of lossy image compression in digital angiography [editorial; comment]. Am J Cardiol 78:219–220, 1996PubMedCrossRefGoogle Scholar
  27. 27.
    Goldberg MA, Pivovarov M, Mayo-Smith WW, et al: Application of wavelet compression to digitized radiographs. AJR Am J Roentgenol 163:463–468, 1994PubMedCrossRefGoogle Scholar
  28. 28.
    Rebelo MS, Furuie SS, Munhoz AC, et al: Lossy compression in nuclear medicine images. Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medical Care, New York, NY, 1993Google Scholar
  29. 29.
    Foos D, Muka E, Slone R, et al: JPEG 2000 compression of medical imagery. The International Society For Optical Engineering (SPIE), San Diego, CA 2000Google Scholar
  30. 30.
    Savcenko V, Erickson B, Persons K, et al: An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to neurologic computed tomography and magnetic resonance images. J Digit Imaging 13:183–185,2000 (suppl 1)PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Uchida K, Nakamura K, Watanabe H, et al: Clinical evaluation of irreversible data compression for computed radiography in excretory urography. J Digit Imaging 9:145–149, 1996PubMedCrossRefGoogle Scholar
  32. 32.
    Wenzel A, Gotfredsen E, Borg E, et al: Impact of lossy image compression on accuracy of caries detection in digital images taken with a storage phosphor system. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, & Endodontics 81:351–355, 1996CrossRefGoogle Scholar
  33. 33.
    Sayre J, Aberle DR, Boechat I, et al: Effect of data compression on diagnostic accuracy in digital hand and chest radiography. Proc SPIE 1653:232–240,1992CrossRefGoogle Scholar
  34. 34.
    Mori T, Nakata H: Irreversible data compression in chest imaging using computed radiography: An evaluation. J Thorac Imaging 9:23–30, 1994PubMedCrossRefGoogle Scholar
  35. 35.
    MacMahon H, Doi K, Sanada S, et al: Data compression: Effect on diagnostic accuracy in digital chest radiography. Radiology 178:175–179, 1991PubMedGoogle Scholar
  36. 36.
    Breeuwer M, Heusdens R, Gunnewiek RK, et al: Data compression of x-ray cardio-angiographic image series. Int J Cardiac Imaging 11:179–186, 1995CrossRefGoogle Scholar
  37. 37.
    Onnasch DG, Prause GP, Ploger A: Objective methods for optimizing JPEG compression of coronary angiographic images. Int J Cardiac Imaging 11:151–162, 1995CrossRefGoogle Scholar
  38. 38.
    Yamamoto LG: Using JPEG image compression to facilitate telemedicine. Am J Emerg Med 13:55-57, 1995 39. Aberle DR, Gleeson F, Sayre JW, et al: The effect of irreversible image compression on diagnostic accuracy in thoracic imaging. Invest Radiol 28:398–403, 1993CrossRefGoogle Scholar
  39. 40.
    Chan HP, Lo SC, Niklason LT, et al: Image compression in digital mammography: Effects on computerized detection of subtle microcalcifications. Med Physics 23:1325–1336, 1996CrossRefGoogle Scholar
  40. 41.
    Saiptech P, Ho BK, Panwar R, et al: Applying wavelet transforms with arithmetic coding to radiological image compression. IEEE Eng in Medicine and Biology 14:587–593, 1995CrossRefGoogle Scholar
  41. 42.
    Erickson BJ, Ryan WJ, Gehring DG, et al: Image display for clinicians on medical record workstations. J Digit Imaging 10:38–40, 1997PubMedCentralPubMedCrossRefGoogle Scholar
  42. 43.
    Erickson B, Persons K, Hangiandreou N, et al: Requirements for an enterprise digital image archive. J Digit Imaging 14:72–82, 2001PubMedCentralPubMedCrossRefGoogle Scholar
  43. 44.
    Erickson B, Ryan W, Gehring D, et al: Clinician usage patterns of a desktop radiology information display application. J Digit Imaging 11:137–141, 1998PubMedCentralPubMedCrossRefGoogle Scholar
  44. 45.
    Eversman W, Pavlicek W, VZavalkovskiy B, et al: Performance and, funciton of a desktop viewer at Mayo Clinic Scottsdale. J Digit Imaging 13:147–152, 2000 (suppl 1)PubMedCentralPubMedCrossRefGoogle Scholar
  45. 46.
    Food and Drug Administration: Federal Register 61, 1996Google Scholar

Copyright information

© SCAR (Society for Computer Applications in Radiology) 2002

Authors and Affiliations

  1. 1.Department of Radiology, Mayo Foundation, Rochester, MNUSA
  2. 2.Department of Radiology, Mayo FoundationRochester, MNUSA

Personalised recommendations