Skip to main content
Log in

Span(Graph): a canonical feedback algebra of open transition systems

  • Special Section Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

We show that \({\textbf{Span}}({\textbf{Graph}})_*\), an algebra for open transition systems introduced by Katis, Sabadini and Walters, satisfies a universal property. By itself, this is a justification of the canonicity of this model of concurrency. However, the universal property is itself of interest, being a formal demonstration of the relationship between feedback and state. Indeed, feedback categories, also originally proposed by Katis, Sabadini and Walters, are a weakening of traced monoidal categories, with various applications in computer science. A state bootstrapping technique, which has appeared in several different contexts, yields free such categories. We show that \({\textbf{Span}}({\textbf{Graph}})_*\) arises in this way, being the free feedback category over \({\textbf{Span}}(\textbf{Set})\). Given that the latter can be seen as an algebra of predicates, the algebra of open transition systems thus arises—roughly speaking—as the result of bootstrapping state to that algebra. Finally, we generalize feedback categories endowing state spaces with extra structure: this extends the framework from mere transition systems to automata with initial and final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Notes

  1. In its original description: “the relay is designed to produce a large and permanent change in the current flowing in an electrical circuit by means of a small electrical stimulus received from the outside” ( [17], emphasis added).

  2. In other words, traces are used to talk about processes in equilibrium processes that have reached a fixed point. A theorem by Hasegawa [28] and Hyland [5] corroborates this interpretation: a trace in a Cartesian category corresponds to a fixpoint operator.

  3. This is the \(\textbf{Int}\) construction from Joyal, Street and Verity [30].

  4. Equivalently, \({\textbf{Graph}}\) is the presheaf category on the diagram \((\bullet \rightrightarrows \bullet )\), i.e. the category of functors \((\bullet \rightrightarrows \bullet ) \rightarrow \textbf{Set}\) and natural transformations between them.

  5. Here, \(\textbf{S}\) is the subcategory of isomorphisms of \(\textbf{C}\) and \(R\) is the inclusion functor.

References

  1. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t know! (2014). arxiv:1401.4973

  2. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. (2006). https://doi.org/10.2168/LMCS-2(5:4)2006

    Article  MathSciNet  MATH  Google Scholar 

  3. Baez, J.C., Courser, K.: Structured cospans. arXiv:1911.04630 (2019)

  4. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar. Springer, pp. 1–77 (1967)

  5. Benton, N., Hyland, M.: Traced premonoidal categories. RAIRO Theor. Inform. Appl. 37(4), 273–299 (2003). https://doi.org/10.1051/ita:2003020

    Article  MathSciNet  MATH  Google Scholar 

  6. Bloom, S.L., Ésik, Z.: Iteration theories—the equational logic of iterative processes. In: EATCS Monographs on Theoretical Computer Science. Springer (1993). https://doi.org/10.1007/978-3-642-78034-9

  7. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), 1–28 (2019). https://doi.org/10.1145/3290338. (Article No.: 25)

    Article  Google Scholar 

  8. Bonchi, F., Sobociński, P., Zanasi, F.: The calculus of signal flow diagrams I: linear relations on streams. Inf. Comput. 252, 2–29 (2017). https://doi.org/10.1016/j.ic.2016.03.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets interactions. In: Concurrency Theory (CONCUR’11), vol. 6901 of LNCS. Springer, pp. 312–326 (2011). https://doi.org/10.1007/978-3-642-23217-6_21

  10. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49(1–2), 11–32 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherubini, A., Sabadini, N., Walters, R.F.C.: Timing in the Cospan/Span model. Electron. Notes Theor. Comput. Sci. 104, 81–97 (2004)

    Article  MATH  Google Scholar 

  12. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reasoning with guarded recursion for coinductive types. In: Andrew, M.P. (ed.), Foundations of Software Science and Computation Structures—18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, April 11–18, 2015. Proceedings, vol. 9034 of Lecture Notes in Computer Science. Springer, pp. 407–421 (2015). https://doi.org/10.1007/978-3-662-46678-0_26

  13. de Francesco Albasini L., Sabadini, N., Walters, R.F.C.: The compositional construction of Markov processes. Appl. Categ. Struct. 19(1), 425–437 (2011)

  14. de Francesco Albasini L., Sabadini, N., Walters, R.F.C.: The compositional construction of Markov processes II. RAIRO Theor. Inform. Appl. 45(1), 117–142 (2011)

  15. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An overview. In: Cosimo, L., Jianwen S. (eds.), Web Services and Formal Methods, 6th International Workshop, WS-FM 2009, Bologna, Italy, September 4–5, 2009, Revised Selected Papers, vol. 6194 of Lecture Notes in Computer Science. Springer, pp. 1–28 (2009). https://doi.org/10.1007/978-3-642-14458-5_1

  16. Di Lavore, E., de Felice, G., Román, M.: Monoidal streams for dataflow programming. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’22. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3531130.3533365

  17. Eccles, W.H., Jordan, F.W.: Improvements in ionic relays. British Patent Number: GB 148582 (1918)

  18. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 175–230. Elsevier (1975)

  19. Fong, B.: Decorated cospans. Theory Appl. Categ. 30(33), 1096–1120 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Fong, B., Spivak, D.I.: An Invitation to Applied Category Theory: Seven Sketches in Compositionality. Cambridge University Press (2019)

    Book  MATH  Google Scholar 

  21. Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Schiavio, F., Tini, S.: CospanSpan(Graph): a compositional description of the heart system. Fundam. Inform. 171(1–4), 221–237 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Tini, S.: Compositional modeling of biological systems in CospanSpan(Graph). In: Proceedings of the ICTCS. CEUR-WS (2020) (To appear)

  23. Gianola, A., Kasangian, S., Sabadini, N.: Cospan/Span(Graph): an Algebra for Open, Reconfigurable Automata Networks. In: Filippo, B., Barbara K. (eds.), 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, June 12–16, 2017, Ljubljana, Slovenia, vol. 72 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 2:1–2:17 (2017). https://doi.org/10.4230/LIPIcs.CALCO.2017.2

  24. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/10.1016/0304-3975(87)90045-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Girard, J.-Y.: Towards a geometry of interaction. Contemp. Math. 92(69–108), 6 (1989)

    MathSciNet  Google Scholar 

  26. Goncharov, S., Schröder, L.: Guarded traced categories. In: Christel, B., Ugo, D.L. (eds.), Foundations of Software Science and Computation Structures—21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Proceedings, vol. 10803 of Lecture Notes in Computer Science. Springer, pp. 313–330 (2018). https://doi.org/10.1007/978-3-319-89366-2_17

  27. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In: de Groote, P. (ed), Typed Lambda Calculi and Applications, Third International Conference on Typed Lambda Calculi and Applications, TLCA’97, Nancy, April 2–4, 1997, Proceedings, vol. 1210 of Lecture Notes in Computer Science. Springer, pp. 196–213 (1997). https://doi.org/10.1007/3-540-62688-3_37

  28. Hasegawa, M.: The uniformity principle on traced monoidal categories. In: Richard, B., Peter, S. (eds.), Category Theory and Computer Science, CTCS 2002, Ottawa, Canada, August 15–17, 2002, vol. 69 of Electronic Notes in Theoretical Computer Science. Elsevier, pp. 137–155 (2002). https://doi.org/10.1016/S1571-0661(04)80563-2

  29. Hoshino, N., Muroya, K., Hasuo, I.: Memoryful geometry of interaction: from coalgebraic components to algebraic effects. In Thomas A.H., Dale, M. (eds.), Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS’14, Vienna, July 14–18 (2014). ACM, pp. 52:1–52:10 (2014). https://doi.org/10.1145/2603088.2603124

  30. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Philos. Soc. 119, 447–468 (1996). https://doi.org/10.1017/S0305004100074338

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory, vol. 1. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  32. Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. J. Pure Appl. Algebra 115(2), 141–178 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorial algebra of transition systems. In: Michael, J. (ed.), Algebraic Methodology and Software Technology, 6th International Conference, AMAST’97, Sydney, December 13–17, 1997, Proceedings, vol. 1349 of Lecture Notes in Computer Science. Springer, pp. 307–321 (1997). https://doi.org/10.1007/BFb0000479

  34. Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of feedback and systems with boundary. In: Rendiconti del Seminario Matematico di Palermo (1999)

  35. Katis, P., Sabadini, N., Walters, R.F.C.: A formalization of the IWIM model. In: António, P., Gruia-Catalin, R. (eds.), Coordination Languages and Models, 4th International Conference, COORDINATION 2000, Limassol, Cyprus, September 11–13, 2000, Proceedings, vol. 1906 of Lecture Notes in Computer Science. Springer, pp. 267–283 (2000). https://doi.org/10.1007/3-540-45263-X_17

  36. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. RAIRO-Theor. Inform. Appl. 36(2), 181–194 (2002). https://doi.org/10.1051/ita:2002009

    Article  MathSciNet  MATH  Google Scholar 

  37. Katis, P., Sabadini, N., Walters, R.F.C.: A Process Algebra for the Span(Graph) Model of Concurrency. arXiv:0904.3964 (2009)

  38. Lack, S.: Composing PROPs. Theory Appl. Categ. 13(9), 147–163 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Di Lavore, E., Gianola, A., Román, M., Sabadini, N., Sobociński, P.: A canonical algebra of open transition systems. In: Gwen, S., Anton, W. (ed.), Formal Aspects of Component Software—17th International Conference, FACS 2021, Virtual Event, October 28–29, 2021, Proceedings, vol. 13077 of Lecture Notes in Computer Science. Springer, pp. 63–81 (2021). https://doi.org/10.1007/978-3-030-90636-8_4

  40. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, Springer, New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

    Book  MATH  Google Scholar 

  41. Mason, S.J.: Feedback Theory—Some properties of signal flow graphs. Proc. Inst. Radio Eng. 41(9), 1144–1156 (1953). https://doi.org/10.1109/JRPROC.1953.274449

    Article  Google Scholar 

  42. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955)

    Article  MathSciNet  Google Scholar 

  43. Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded (co-)recursion. Fundam. Inform. 150(3–4), 407–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pavlović, D.: Maps I: relative to a factorisation system. J. Pure Appl. Algebra 99(1), 9–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ponto, K., Shulman, M.: Traces in symmetric monoidal categories. Expos. Math. 32(3), 248–273 (2014). https://doi.org/10.1016/j.exmath.2013.12.003

    Article  MathSciNet  MATH  Google Scholar 

  46. Rathke, J., Sobociński, P., Stephens, O.: Compositional reachability in petri nets. In: Joël, O., Igor, P., James, W. (eds.), Reachability Problems—8th International Workshop, RP 2014, Oxford, UK, September 22–24, 2014. Proceedings, vol. 8762 of Lecture Notes in Computer Science. Springer, pp. 230–243 (2014). https://doi.org/10.1007/978-3-319-11439-2_18

  47. Román, M.: Span graph via the state construction (2022). https://github.com/mroman42/feedback-span-graph

  48. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory Appl. Categ. 15(6), 164–177 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Sabadini, N., Schiavio, F., Walters, R.F.C.: On the geometry and algebra of networks with state. Theor. Comput. Sci. 664, 144–163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics. Springer, pp. 289–355 (2010). https://doi.org/10.1007/978-3-642-12821-9_4

  51. Claude, E.S.: The Theory and Design of Linear Differential Equation Machines. Bell Telephone Laboratories (1942)

    Google Scholar 

  52. Sobociński, P.: A non-interleaving process calculus for multi-party synchronisation. In: 2nd Interaction and Concurrency Experience: Structured Interactions, (ICE 2009), vol. 12 of EPTCS (2009). http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf, https://doi.org/10.4204/eptcs.12.6

  53. Sobociński, P.: Representations of Petri net interactions. In: Concurrency Theory, 21th International Conference, (CONCUR 2010), vol. 6269 of Lecture Notes in Computer Science. Springer, pp. 554–568 (2010). https://doi.org/10.1007/978-3-642-15375-4_38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Di Lavore.

Additional information

Communicated by Gwen Salaun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Di Lavore, Román and Sobociński were supported by the European Union through the ESF funded Estonian IT Academy research measure (2014\(-\)2020.4.05.19-0001). This work was also supported by the Estonian Research Council grant PRG1210.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lavore, E., Gianola, A., Román, M. et al. Span(Graph): a canonical feedback algebra of open transition systems. Softw Syst Model 22, 495–520 (2023). https://doi.org/10.1007/s10270-023-01092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-023-01092-7

Navigation