Skip to main content

Model-based test case generation and prioritization: a systematic literature review

Abstract

Model-based test case generation (MB-TCG) and prioritization (MB-TCP) utilize models that represent the system under test (SUT) for test generation and prioritization in software testing. They are based on model-based testing (MBT), a technique that facilitates automation in testing. Automated testing is indispensable for testing complex and industrial-size systems because of its advantages over manual testing. In recent years, MB-TCG and MB-TCP publications have shown an encouraging growth. However, the empirical studies done to validate these approaches must not be taken lightly because they reflect the results' validity and whether these approaches are generalizable to the industrial context. This systematic review aims at identifying and reviewing the state-of-the-art for MB-TCG, MB-TCP, and the approaches that combined MB-TCG and MB-TCP. The needs for this review were used to design the research questions. Keywords extracted from the research questions were utilized to search for studies in the literature that will answer the research questions. Prospective studies also underwent a quality assessment to ensure that only studies with sufficient quality were selected. All the research data of this review are also available in a public repository for full transparency. 122 primary studies were finalized and selected. There were 100, 15, and seven studies proposed for MB-TCG, MB-TCP, and MB-TCG and MB-TCP combination approaches, respectively. One of the main findings is that the most common limitations in the existing approaches are the dependency on specifications, the need for manual interventions, and the scalability issue.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). https://doi.org/10.1002/stvr.456

    Article  Google Scholar 

  2. 2.

    Arora, P.K., Bhatia, R.: A systematic review of agent-based test case generation for regression testing. Arab. J. Sci. Eng. 43(2), 447–470 (2018). https://doi.org/10.1007/s13369-017-2796-4

    Article  Google Scholar 

  3. 3.

    Setiani, N., Ferdiana, R., Santosa, P.I., Hartanto, R.: Literature review on test case generation approach. In: 2nd International Conference on Software Engineering and Information Management, Bali, Indonesia, pp. 91–95. ACM, (2019).

  4. 4.

    Catal, C., Mishra, D.: Test case prioritization: a systematic mapping study. Softw. Qual. J. 21(3), 445–478 (2013). https://doi.org/10.1007/s11219-012-9181-z

    Article  Google Scholar 

  5. 5.

    Shah, S.A.A., Shahzad, R.K., Bukhari, S.S.A., Minhas, N.M., Humayun, M.: A review of class based test case generation techniques. JSW 11(5), 464–480 (2016). https://doi.org/10.17706/jsw.11.5.464-480

    Article  Google Scholar 

  6. 6.

    Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on use case and sequence diagram. Int. J. Softw. Eng. 3(2), 21–52 (2010)

    Google Scholar 

  7. 7.

    Prasanna, M., Sivanandam, S., Venkatesan, R., Sundarrajan, R.: A survey on automatic test case generation. Acad. Open Internet J. 15(6) (2005). http://www.acadjournal.com/2005/v15/part6/p4/

  8. 8.

    Ingle, S., Mahamune, M.: An uml based software automatic test case generation: survey. Int. Res. J. Eng. Technol. 2(1), 971–973 (2015)

    Google Scholar 

  9. 9.

    Maheshwari, V., Prasanna, M.: Generation of test case using automation in software systems—a review. Indian J. Sci. Technol. 8(35), 1 (2015)

    Article  Google Scholar 

  10. 10.

    Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., Micco, J.: Taming Google-scale continuous testing. In: 39th International Conference on Software Engineering: Software Engineering in Practice Track, Buenos Aires, Argentina, pp. 233–242. IEEE (2017). https://doi.org/10.1109/ICSE-SEIP.2017.16

  11. 11.

    Singh, R.: Test case generation for object-oriented systems: a review. In: Fourth International Conference on Communication Systems and Network Technologies, Bhopal, India, pp. 981–989. IEEE (2014). https://doi.org/10.1109/CSNT.2014.201

  12. 12.

    Chugh, M.A.: GUI based test case generation—a review. Int. J. Recent Innov. Trends Comput. Commun. 5(6), 273–276 (2017)

    Google Scholar 

  13. 13.

    Kaur, K., Chopra, V.: Review of automatic test case generation from UML diagram using evolutionary algorithm. Int. J. Invent. Eng. Sci. 2(11), 17–20 (2014)

    Google Scholar 

  14. 14.

    Mahadik, P., Bhattacharyya, D., Jin Kim, H.: Techniques for automated test cases generation: a review. Int. J. Softw. Eng. Appl. 10(12), 13–20 (2016)

    Google Scholar 

  15. 15.

    Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the application and empirical investigation of search-based test case generation. IEEE Trans. Softw. Eng. 36(6), 742–762 (2009). https://doi.org/10.1109/TSE.2009.52

    Article  Google Scholar 

  16. 16.

    Bansal, P.: A critical review on test case prioritization and optimization using soft computing techniques. In: International Conference on Role of Technology in Nation Building (ICRTNB-2013), pp. 74–77 (2013)

  17. 17.

    Rajal, J.S., Sharma, S.: A review on various techniques for regression testing and test case prioritization. Int. J. Comput. Appl. 116(16), 8–13 (2015)

    Google Scholar 

  18. 18.

    Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

    Article  Google Scholar 

  19. 19.

    Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., Etxeberria, L.: Employing multi-objective search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE Trans. Ind. Inform. 14(3), 1055–1066 (2017). https://doi.org/10.1109/TII.2017.2788019

    Article  Google Scholar 

  20. 20.

    Ahmad, J., Baharom, S.: A systematic literature review of the test case prioritization technique for sequence of events. Int. J. Appl. Eng. Res. 12(7), 1389–1395 (2017)

    Google Scholar 

  21. 21.

    Rava, M., Wan-Kadir, W.M.: A review on prioritization techniques in regression testing. Int. J. Softw. Eng. Appl. 10(1), 221–232 (2016). https://doi.org/10.14257/ijseia.2016.10.1.21

    Article  Google Scholar 

  22. 22.

    Qu, X., Cohen, M.B., Woolf, K.M.: Combinatorial interaction regression testing: a study of test case generation and prioritization. In: International Conference on Software Maintenance, Paris, France, pp. 255–264. IEEE (2007). https://doi.org/10.1109/ICSM.2007.4362638

  23. 23.

    Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Test generation and test prioritization for simulink models with dynamic behavior. IEEE Trans. Softw. Eng. 45(9), 919–944 (2018). https://doi.org/10.1109/TSE.2018.2811489

    Article  Google Scholar 

  24. 24.

    Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test case generation and prioritization. In: Proceedings of the 3rd International Workshop on Automation of Software Test, Leipzig, Germany, pp. 67–70. ACM (2008). https://doi.org/10.1145/1370042.1370057

  25. 25.

    Tahiliani, S., Pandit, P.: A survey of UML-based approaches to testing. Int. J. Comput. Eng. Res. 2(5), 1396–1400 (2012)

    Google Scholar 

  26. 26.

    Nagpurkar, S., Gurav, Y.: A survey on test case generation from UML based requirement analysis model. Int. J. Adv. Res. Technol. 2, 282–284 (2013)

    Google Scholar 

  27. 27.

    Khandai, M., Acharya, A.A., Mohapatra, D.P.: A survey on test case generation from UML model. Int. J. Comput. Sci. Inf. Technol. 2(3), 1164–1171 (2011)

    Google Scholar 

  28. 28.

    Aggarwal, M., Sabharwal, S.: Test case generation from UML state machine diagram: a survey. In: Third International Conference on Computer and Communication Technology, Allahabad, India, pp. 133–140. IEEE (2012). https://doi.org/10.1109/ICCCT.2012.34

  29. 29.

    Pahwa, N., Solanki, K.: UML based test case generation methods: a review. Int. J. Comput. Appl. 95(20), 1–6 (2014)

    Google Scholar 

  30. 30.

    Shirole, M., Kumar, R.: UML behavioral model based test case generation: a survey. ACM SIGSOFT Softw. Eng. Notes 38(4), 1–13 (2013). https://doi.org/10.1145/2492248.2492274

    Article  Google Scholar 

  31. 31.

    Mohanty, S., Acharya, A.A., Mohapatra, D.P.: A survey on model based test case prioritization. Int. J. Comput. Sci. Inf. Technol. 2(3), 1042–1047 (2011)

    Google Scholar 

  32. 32.

    Joshi, S.A., Tiple, B.: Literature review of model based test case prioritization. Int. J. Comput. Sci. Inf. Technol. 5(5), 6736–6738 (2014)

    Google Scholar 

  33. 33.

    Sharma, S., Singh, A.: Model-based test case prioritization using ACO: a review. In: Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, pp. 177–181. IEEE (2016). https://doi.org/10.1109/PDGC.2016.7913140

  34. 34.

    Shafie, M.L., Kadir, W.M.W.: Model-based test case prioritization: a systematic literature review. J. Theor. Appl. Inf. Technol. (JATIT) 96(14), 4548–4573 (2018)

    Google Scholar 

  35. 35.

    Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., Porres, I.: Model-based testing using UML activity diagrams: a systematic mapping study. Comput. Sci. Rev. 33, 98–112 (2019). https://doi.org/10.1016/j.cosrev.2019.07.001

    Article  Google Scholar 

  36. 36.

    Javed, H., Minhas, N.M., Abbas, A., Riaz, F.M.: Model based testing for web applications: a literature survey presented. J. Softw. 11(4), 347–361 (2016). https://doi.org/10.17706/jsw.11.4.347-361

    Article  Google Scholar 

  37. 37.

    Sabbaghi, A., Keyvanpour, M.R.: State-based models in model-based testing: a systematic review. In: 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, pp. 0942–0948. IEEE (2017). https://doi.org/10.1109/KBEI.2017.8324934

  38. 38.

    Ernits, J., Roo, R., Jacky, J., Veanes, M.: Model-based testing of web applications using NModel. In: Núñez, M., Baker, P., Merayo, M.G. (eds.) Testing of Software and Communication Systems, pp. 211–216. Springer, Berlin (2009)

    Chapter  Google Scholar 

  39. 39.

    Pretschner, A., Philipps, J.: 10 methodological issues in model-based testing. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems, pp. 281–291. Springer, Berlin (2005)

    Chapter  Google Scholar 

  40. 40.

    Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Harman, M., Harrold, M.J., Mcminn, P., Bertolino, A.: An orchestrated survey of methodologies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013). https://doi.org/10.1016/j.jss.2013.02.061

    Article  Google Scholar 

  41. 41.

    Singh, Y., Kaur, A., Suri, B., Singhal, S.: Systematic literature review on regression test prioritization techniques. Informatica 36(4), 379–408 (2012)

    Google Scholar 

  42. 42.

    Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012). https://doi.org/10.1002/stvr.430

    Article  Google Scholar 

  43. 43.

    Keele, S.: Guidelines for performing systematic literature reviews in software engineering. In: Technical report, Ver. 2.3 EBSE Technical Report. EBSE. sn (2007)

  44. 44.

    Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007). https://doi.org/10.1016/j.jss.2006.07.009

    Article  Google Scholar 

  45. 45.

    Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Tumeng, R.: Test case prioritization approaches in regression testing: a systematic literature review. Inf. Softw. Technol. 93, 74–93 (2018). https://doi.org/10.1016/j.infsof.2017.08.014

    Article  Google Scholar 

  46. 46.

    Gurbuz, H.G., Tekinerdogan, B.: Model-based testing for software safety: a systematic mapping study. Softw. Qual. J. 26(4), 1327–1372 (2018). https://doi.org/10.1007/s11219-017-9386-2

    Article  Google Scholar 

  47. 47.

    Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: 18th International Conference on Evaluation and Assessment in Software Engineering, London, England, UK, pp. 1–10. ACM (2014). https://doi.org/10.1145/2601248.2601268

  48. 48.

    Mohd-Shafie, M.L.: Replication data for: model-based test case generation and prioritization: a systematic literature review. Harvard Dataverse (2020). https://doi.org/10.7910/DVN/20VASV

  49. 49.

    Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.-M.: Automatic test generation: a use case driven approach. IEEE Trans. Softw. Eng. 32(3), 140–155 (2006). https://doi.org/10.1109/TSE.2006.22

    Article  Google Scholar 

  50. 50.

    Belli, F., Hollmann, A.: Test generation and minimization with “basic” statecharts. In: Symposium on applied computing, Fortaleza, Ceara, Brazil, pp. 718–723. ACM (2008). https://doi.org/10.1145/1363686.1363856

  51. 51.

    Arcaini, P., Gargantini, A., Riccobene, E.: Improving model-based test generation by model decomposition. In: 10th Joint Meeting on Foundations of Software Engineering, New York, USA, pp. 119–130. ACM (2015). https://doi.org/10.1145/2786805.2786837

  52. 52.

    Belli, F., Beyazıt, M.: Exploiting model morphology for event-based testing. IEEE Trans. Softw. Eng. 41(2), 113–134 (2015). https://doi.org/10.1109/TSE.2014.2360690

    Article  Google Scholar 

  53. 53.

    Gambi, A., Mayr-Dorn, C., Zeller, A.: Model-based testing of end-user collaboration intensive systems. In: Symposium on Applied Computing, Marrakech, Morocco, pp. 1213–1218. ACM (2017). https://doi.org/10.1145/3019612.3019778

  54. 54.

    Marchetto, A., Tonella, P., Ricca, F.: State-based testing of Ajax web applications. In: 1st International Conference on Software Testing, Verification, and Validation, Lillehammer, Norway, pp. 121–130. IEEE (2008). https://doi.org/10.1109/ICST.2008.22

  55. 55.

    Arcaini, P., Gargantini, A., Riccobene, E.: Decomposition-based approach for model-based test generation. IEEE Trans. Softw. Eng. 45(5), 507–520 (2017). https://doi.org/10.1109/TSE.2017.2781231

    Article  Google Scholar 

  56. 56.

    Devroey, X., Perrouin, G., Schobbens, P.-Y.: Abstract test case generation for behavioural testing of software product lines. In: 18th International Software Product Line Conference: Companion Volume for Workshops, Demonstrations and Tools, Florence, Italy, pp. 86–93. ACM (2014). https://doi.org/10.1145/2647908.2655971

  57. 57.

    Belli, F., Budnik, C.J., Hollmann, A., Tuglular, T., Wong, W.E.: Model-based mutation testing—approach and case studies. Sci. Comput. Program. 120, 25–48 (2016). https://doi.org/10.1016/j.scico.2016.01.003

    Article  Google Scholar 

  58. 58.

    Andrade, W.L., Machado, P.D.: Generating test cases for real-time systems based on symbolic models. IEEE Trans. Softw. Eng. 39(9), 1216–1229 (2013). https://doi.org/10.1109/TSE.2013.13

    Article  Google Scholar 

  59. 59.

    Endo, A.T., Bernardino, M., Rodrigues, E.M., Simao, A., de Oliveira, F.M., Zorzo, A.F., Saad, R.: An industrial experience on using models to test web service-oriented applications. In: International Conference on Information Integration and Web-Based Applications & Services (IIWAS), Vienna, Austria, pp. 240–249. ACM (2013). https://doi.org/10.1145/2539150.2539188

  60. 60.

    Sun, C.-A., Zhang, B., Li, J.: TSGen: A UML activity diagram-based test scenario generation tool. In: International Conference on Computational Science and Engineering, Vancouver, BC, Canada pp. 853–858. IEEE (2009). https://doi.org/10.1109/CSE.2009.99

  61. 61.

    Yuan, X., Memon, A.M.: Generating event sequence-based test cases using GUI runtime state feedback. IEEE Trans. Softw. Eng. 36(1), 81–95 (2009). https://doi.org/10.1109/TSE.2009.68

    Article  Google Scholar 

  62. 62.

    Endo, A.T., Simao, A.: Event tree algorithms to generate test sequences for composite Web services. Softw. Test. Verif. Reliab. 29(3), e1637 (2019). https://doi.org/10.1002/stvr.1637

    Article  Google Scholar 

  63. 63.

    Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., Li, X.: UML activity diagram-based automatic test case generation for Java programs. Comput. J. 52(5), 545–556 (2009). https://doi.org/10.1093/comjnl/bxm057

    Article  Google Scholar 

  64. 64.

    Masood, A., Bhatti, R., Ghafoor, A., Mathur, A.P.: Scalable and effective test generation for role-based access control systems. IEEE Trans. Softw. Eng. 35(5), 654–668 (2009). https://doi.org/10.1109/TSE.2009.35

    Article  Google Scholar 

  65. 65.

    Satpathy, M., Yeolekar, A., Peranandam, P., Ramesh, S.: Efficient coverage of parallel and hierarchical stateflow models for test case generation. Softw. Test. Verif. Reliab. 22(7), 457–479 (2012). https://doi.org/10.1002/stvr.444

    Article  Google Scholar 

  66. 66.

    Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on state and activity models. J. Object Technol. 9(5), 1–27 (2010)

    Article  Google Scholar 

  67. 67.

    El-Fakih, K., Yevtushenko, N., Bochmann, G.: FSM-based incremental conformance testing methods. IEEE Trans. Softw. Eng. 30(7), 425–436 (2004). https://doi.org/10.1109/TSE.2004.31

    Article  Google Scholar 

  68. 68.

    Gallagher, L., Offutt, J., Cincotta, A.: Integration testing of object-oriented components using finite state machines. Softw. Test. Verif. Reliab. 16(4), 215–266 (2006). https://doi.org/10.1002/stvr.340

    Article  Google Scholar 

  69. 69.

    Yang, R., Chen, Z., Xu, B., Wong, W.E., Zhang, J.: Improve the effectiveness of test case generation on efsm via automatic path feasibility analysis. In: 13th international symposium on high-assurance systems engineering, Boca Raton, FL, USA, pp. 17–24. IEEE (2011). https://doi.org/10.1109/HASE.2011.12

  70. 70.

    Liu, P., Xu, Z.: MTTool: a tool for software modeling and test generation. IEEE Access 6, 56222–56237 (2018). https://doi.org/10.1109/ACCESS.2018.2872774

    Article  Google Scholar 

  71. 71.

    Zhang, M., Ali, S., Yue, T.: Uncertainty-wise test case generation and minimization for cyber-physical systems. J. Syst. Softw. 153, 1–21 (2019). https://doi.org/10.1016/j.jss.2019.03.011

    Article  Google Scholar 

  72. 72.

    Keum, C., Kang, S., Ko, I.-Y., Baik, J., Choi, Y.-I.: Generating test cases for web services using extended finite state machine. In: IFIP International Conference on Testing of Communicating Systems, New York, USA, pp. 103–117. Springer (2006). https://doi.org/10.1007/11754008_7

  73. 73.

    Xu, D., Xu, W., Kent, M., Thomas, L., Wang, L.: An automated test generation technique for software quality assurance. IEEE Trans. Reliab. 64(1), 247–268 (2014). https://doi.org/10.1109/TR.2014.2354172

    Article  Google Scholar 

  74. 74.

    Kalaee, A., Rafe, V.: Model-based test suite generation for graph transformation system using model simulation and search-based techniques. Inf. Softw. Technol. 108, 1–29 (2018). https://doi.org/10.1016/j.infsof.2018.12.001

    Article  Google Scholar 

  75. 75.

    Asoudeh, N., Labiche, Y.: Multi-objective construction of an entire adequate test suite for an EFSM. In: 25th International Symposium on Software Reliability Engineering, Naples, Italy, pp. 288–299. IEEE (2014). https://doi.org/10.1109/ISSRE.2014.14

  76. 76.

    Arora, P.K., Bhatia, R.: Mobile agent-based regression test case generation using model and formal specifications. IET Softw. 12(1), 30–40 (2017). https://doi.org/10.1049/iet-sen.2016.0203

    Article  Google Scholar 

  77. 77.

    Kalaji, A.S., Hierons, R.M., Swift, S.: An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models. Inf. Softw. Technol. 53(12), 1297–1318 (2011). https://doi.org/10.1016/j.infsof.2011.06.004

    Article  Google Scholar 

  78. 78.

    Belli, F., Endo, A.T., Linschulte, M., Simao, A.: A holistic approach to model-based testing of Web service compositions. Softw. Pract. Exp. 44(2), 201–234 (2014). https://doi.org/10.1002/spe.2161

    Article  Google Scholar 

  79. 79.

    Anbunathan, R., Basu, A.: Combining genetic algorithm and pairwise testing for optimised test generation from UML ADs. IET Softw. 13(5), 423–433 (2019). https://doi.org/10.1049/iet-sen.2018.5207

    Article  Google Scholar 

  80. 80.

    Ali, S., Briand, L.C., Rehman, M.J.-U., Asghar, H., Iqbal, M.Z.Z., Nadeem, A.: A state-based approach to integration testing based on UML models. Inf. Softw. Technol. 49(11–12), 1087–1106 (2007). https://doi.org/10.1016/j.infsof.2006.11.002

    Article  Google Scholar 

  81. 81.

    Fraser, G., Wotawa, F.: Using model-checkers to generate and analyze property relevant test-cases. Softw. Qual. J. 16(2), 161–183 (2008). https://doi.org/10.1007/s11219-007-9031-6

    Article  Google Scholar 

  82. 82.

    Singh, R., Bhatia, R., Singhrova, A.: Demand based test case generation for object oriented system. IET Softw. 13(5), 403–413 (2019). https://doi.org/10.1049/iet-sen.2018.5043

    Article  Google Scholar 

  83. 83.

    Hessel, A., Pettersson, P.: A global algorithm for model-based test suite generation. Electron. Notes Theor. Comput. Sci. 190(2), 47–59 (2007). https://doi.org/10.1016/j.entcs.2007.08.005

    Article  Google Scholar 

  84. 84.

    Wong, W.E., Restrepo, A., Choi, B.: Validation of SDL specifications using EFSM-based test generation. Inf. Softw. Technol. 51(11), 1505–1519 (2009). https://doi.org/10.1016/j.infsof.2009.06.005

    Article  Google Scholar 

  85. 85.

    Samuel, P., Mall, R., Bothra, A.K.: Automatic test case generation using unified modeling language (UML) state diagrams. IET Softw. 2(2), 79–93 (2008). https://doi.org/10.1049/iet-sen:20060061

    Article  Google Scholar 

  86. 86.

    Arcaini, P., Gargantini, A.: Test generation for sequential nets of abstract state machines with information passing. Sci. Comput. Program. 94, 93–108 (2014). https://doi.org/10.1016/j.scico.2014.02.007

    Article  Google Scholar 

  87. 87.

    Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from ASM specifications. In: International Workshop on Abstract State Machines, Turku, Finland, pp. 263–277. Springer (2003). https://doi.org/10.1007/3-540-36498-6_15

  88. 88.

    Kirkici, A., Gebizli, C.S., Sözer, H.: Risk-driven model-based testing of washing machine software: an industrial case study. In: International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Vasteras, Sweden, pp. 398–403. IEEE (2018). https://doi.org/10.1109/ICSTW.2018.00080

  89. 89.

    Pradhan, S., Ray, M., Swain, S.K.: Transition coverage based test case generation from state chart diagram. J. King Saud Univ. Comput. Inf. Sci. (2019). https://doi.org/10.1016/j.jksuci.2019.05.005

    Article  Google Scholar 

  90. 90.

    Prasanna, M., Chandran, K.: Automatic test case generation for UML object diagrams using genetic algorithm. Int. J. Adv. Soft Comput. Appl 1(1), 19–32 (2009)

    Google Scholar 

  91. 91.

    Perrouin, G., Sen, S., Klein, J., Baudry, B., Le Traon, Y.: Automated and scalable t-wise test case generation strategies for software product lines. In: Third International Conference on Software Testing, Verification and Validation, Paris, France, pp. 459–468. IEEE (2010). https://doi.org/10.1109/ICST.2010.43

  92. 92.

    Nabuco, M., Paiva, A.C.: Model-based test case generation for web applications. In: International Conference on Computational Science and Its Applications, Guimarães, Portugal, pp. 248–262. Springer (2014). https://doi.org/10.1007/978-3-319-09153-2_19

  93. 93.

    Fraser, G., Wotawa, F.: Using LTL rewriting to improve the performance of model-checker based test-case generation. In: 3rd International Workshop on Advances in Model-Based Testing, London, UK, pp. 64–74. ACM (2007). https://doi.org/10.1145/1291535.1291542

  94. 94.

    Guan, J., Offutt, J.: A model-based testing technique for component-based real-time embedded systems. In: Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Graz, Austria, pp. 1–10. IEEE (2015). https://doi.org/10.1109/ICSTW.2015.7107407

  95. 95.

    Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-time test case generation using UPPAAL. In: International Workshop on Formal Approaches to Software Testing, Montreal, QC, Canada, pp. 114–130. Springer (2003). https://doi.org/10.1007/978-3-540-24617-6_9

  96. 96.

    Nayak, A., Samanta, D.: Synthesis of test scenarios using UML sequence diagrams. Int. Schol. Res. Not. (2012). https://doi.org/10.5402/2012/324054

    Article  Google Scholar 

  97. 97.

    Enoiu, E.P., Sundmark, D., Pettersson, P.: Model-based test suite generation for function block diagrams using the Uppaal model checker. In: Sixth International Conference on Software Testing, Verification and Validation Workshops, Luxembourg, Luxembourg, pp. 158–167. IEEE (2013). https://doi.org/10.1109/ICSTW.2013.27

  98. 98.

    Ding, Z., Jiang, M., Chen, H., Jin, Z., Zhou, M.: Petri net based test case generation for evolved specification. Sci. China Inf. Sci. 59(8), 080105 (2016). https://doi.org/10.1007/s11432-016-5598-5

    Article  Google Scholar 

  99. 99.

    Bahrin, N.K., Mohamad, R.: TCG algorithm approach for UML sequence diagram. In: 9th Malaysian Software Engineering Conference (MySEC), Kuala Lumpur, Malaysia, pp. 43–48. IEEE (2015). https://doi.org/10.1109/MySEC.2015.7475193

  100. 100.

    Lorber, F., Larsen, K.G., Nielsen, B.: Model-based mutation testing of real-time systems via model checking. In: International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Vasteras, Sweden, pp. 59–68. IEEE (2018). https://doi.org/10.1109/ICSTW.2018.00029

  101. 101.

    Reis, S., Metzger, A., Pohl, K.: Integration testing in software product line engineering: a model-based technique. In: International Conference on Fundamental Approaches to Software Engineering, Braga, Portugal, pp. 321–335. Springer (2007). https://doi.org/10.1007/978-3-540-71289-3_25

  102. 102.

    Sarma, M., Mall, R.: System state coverage through automatic test case generation. Int. J. Inf. Commun. Technol. 1(3–4), 347–372 (2008). https://doi.org/10.1504/IJICT.2008.024007

    Article  Google Scholar 

  103. 103.

    Marinescu, R., Enoiu, E., Seceleanu, C., Sundmark, D.: Automatic test generation for energy consumption of embedded systems modeled in EAST-ADL. In: International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Tokyo, Japan, pp. 69–76. IEEE (2017). https://doi.org/10.1109/ICSTW.2017.19

  104. 104.

    Seqerloo, A.Y., Amiri, M.J., Parsa, S., Koupaee, M.: Automatic test cases generation from business process models. Requir. Eng. 24(1), 119–132 (2019). https://doi.org/10.1007/s00766-018-0304-3

    Article  Google Scholar 

  105. 105.

    Khamaiseh, S., Chapman, P., Xu, D.: Model-based testing of obligatory ABAC systems. In: International Conference on Software Quality, Reliability and Security (QRS), Lisbon, Portugal, pp. 405–413. IEEE (2018). https://doi.org/10.1109/QRS.2018.00054

  106. 106.

    Yano, T., Martins, E., de Sousa, F.L.: MOST: a multi-objective search-based testing from EFSM. In: Fourth International Conference on Software Testing, Verification and Validation Workshops, Berlin, Germany, pp. 164–173. IEEE (2011). https://doi.org/10.1109/ICSTW.2011.37

  107. 107.

    De Souza, É.F., de Santiago Júnior, V.A., Vijaykumar, N.L.: H-Switch Cover: a new test criterion to generate test case from finite state machines. Softw. Qual. J. 25(2), 373–405 (2017). https://doi.org/10.1007/s11219-015-9300-8

    Article  Google Scholar 

  108. 108.

    Fragal, V.H., Simao, A., Mousavi, M.R., Turker, U.C.: Extending HSI test generation method for software product lines. Comput. J. 62(1), 109–129 (2018). https://doi.org/10.1093/comjnl/bxy046

    Article  Google Scholar 

  109. 109.

    Soucha, M., Bogdanov, K.: SPYH-method: an improvement in testing of finite-state machines. In: International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Vasteras, Sweden, pp. 194–203. IEEE (2018). https://doi.org/10.1109/ICSTW.2018.00050

  110. 110.

    Paiva, S.C., Simao, A.: Generation of complete test suites from mealy input/output transition systems. Form. Asp. Comput. 28(1), 65–78 (2016). https://doi.org/10.1007/s00165-015-0350-2

    MathSciNet  Article  MATH  Google Scholar 

  111. 111.

    Wong, S., Ooi, C.Y., Hau, Y.W., Marsono, M.N., Shaikh-Husin, N.: Feasible transition path generation for EFSM-based system testing. In: International Symposium on Circuits and Systems (ISCAS), Beijing, China, pp. 1724–1727. IEEE (2013). https://doi.org/10.1109/ISCAS.2013.6572197

  112. 112.

    Kruse, P.M., Wegener, J.: Test sequence generation from classification trees. In: Fifth International Conference on Software Testing, Verification and Validation, Montreal, QC, Canada, pp. 539–548. IEEE (2012). https://doi.org/10.1109/ICST.2012.139

  113. 113.

    Nayak, A., Samanta, D.: Synthesis of test scenarios using UML activity diagrams. Softw. Syst. Model. 10(1), 63–89 (2011). https://doi.org/10.1007/s10270-009-0133-4

    Article  Google Scholar 

  114. 114.

    Shu, T., Ding, Z., Chen, M., Xia, J.: A heuristic transition executability analysis method for generating EFSM-specified protocol test sequences. Inf. Sci. 370–371, 63–78 (2016). https://doi.org/10.1016/j.ins.2016.07.059

    MathSciNet  Article  Google Scholar 

  115. 115.

    Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ unit tests from abstract state machines specifications. In: International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Vasteras, Sweden, pp. 185–193. IEEE (2018). https://doi.org/10.1109/ICSTW.2018.00049

  116. 116.

    Arcaini, P., Bolis, F., Gargantini, A.: Test generation for sequential nets of abstract state machines. In: International Conference on Abstract State Machines, Alloy, B, VDM, and Z, Pisa, Italy, pp. 36–50. Springer (2012). https://doi.org/10.1007/978-3-642-30885-7_3

  117. 117.

    Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., Su, Z.: Guided, stochastic model-based GUI testing of Android apps. In: 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, pp. 245–256. ACM (2017). https://doi.org/10.1145/3106237.3106298

  118. 118.

    Thummalapenta, S., Lakshmi, K.V., Sinha, S., Sinha, N., Chandra, S.: Guided test generation for web applications. In: 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, pp. 162–171. IEEE (2013). https://doi.org/10.1109/ICSE.2013.6606562

  119. 119.

    Enoiu, E.P., Čaušević, A., Ostrand, T.J., Weyuker, E.J., Sundmark, D., Pettersson, P.: Automated test generation using model checking: an industrial evaluation. Int. J. Softw. Tools Technol. Transf. 18(3), 335–353 (2016). https://doi.org/10.1007/s10009-014-0355-9

    Article  Google Scholar 

  120. 120.

    Tonella, P., Tiella, R., Nguyen, C.D.: N-gram based test sequence generation from finite state models. In: International Workshop on Future Internet Testing, Istanbul, Turkey, pp. 59–74. Springer (2013). https://doi.org/10.1007/978-3-319-07785-7_4

  121. 121.

    Zhang, J., Yang, R., Chen, Z., Zhao, Z., Xu, B.: Automated EFSM-based test case generation with scatter search. In: 7th International Workshop on Automation of Software Test (AST), Zurich, Switzerland, pp. 76–82. IEEE (2012). https://doi.org/10.1109/IWAST.2012.6228994

  122. 122.

    Shin, K.-W., Lim, D.-J.: Model-based automatic test case generation for automotive embedded software testing. Int. J. Autom. Technol. 19(1), 107–119 (2018). https://doi.org/10.1007/s12239-018-0011-6

    Article  Google Scholar 

  123. 123.

    Sulaiman, R.A., Jawawi, D.N., Abd Halim, S.: Derivation of test cases for model-based testing of software product line with hybrid heuristic approach. In: International Conference of Reliable Information and Communication Technology, Johor, Malaysia, pp. 199–208. Springer (2019). https://doi.org/10.1007/978-3-030-33582-3_19

  124. 124.

    Jiang, Z., Wu, X., Dong, Z., Mu, M.: Optimal test case generation for simulink models using slicing. In: International Conference on Software Quality, Reliability and Security Companion (QRS-C), Prague, Czech Republic, pp. 363–369. IEEE (2017). https://doi.org/10.1109/QRS-C.2017.67

  125. 125.

    Chen, M., Mishra, P., Kalita, D.: Efficient test case generation for validation of UML activity diagrams. Des. Autom. Embedd. Syst. 14(2), 105–130 (2010). https://doi.org/10.1007/s10617-010-9052-4

    Article  Google Scholar 

  126. 126.

    Liu, B., Nejati, S., Briand, L.C.: Improving fault localization for Simulink models using search-based testing and prediction models. In: 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, Austria, pp. 359–370. IEEE (2017). https://doi.org/10.1109/SANER.2017.7884636

  127. 127.

    Chen, Y., Wang, A., Wang, J., Liu, L., Song, Y., Ha, Q.: Automatic test transition paths generation approach from EFSM using state tree. In: International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, pp. 87–93. IEEE (2018). https://doi.org/10.1109/QRS-C.2018.00029

  128. 128.

    Choi, Y.-M., Lim, D.-J.: Model-based test suite generation using mutation analysis for fault localization. Appl. Sci. 9(17), 3492 (2019). https://doi.org/10.3390/app9173492

    Article  Google Scholar 

  129. 129.

    Xu, D., El-Ariss, O., Xu, W., Wang, L.: Testing aspect-oriented programs with finite state machines. Softw. Test. Verif. Reliab. 22(4), 267–293 (2012). https://doi.org/10.1002/stvr.440

    Article  Google Scholar 

  130. 130.

    Turlea, A., Ipate, F., Lefticaru, R.: Generating complex paths for testing from an EFSM. In: International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 242–249. IEEE (2018). https://doi.org/10.1109/QRS-C.2018.00052

  131. 131.

    Rezaee, A., Zamani, B.: A novel approach to automatic model-based test case generation. Sci. Iran. Trans. Comput. Sci. Eng. Electr. Eng. 24(6), 3132–3147 (2017). https://doi.org/10.24200/sci.2017.4528

    Article  Google Scholar 

  132. 132.

    Guo, J., Wang, W., Sun, L., Li, Z., Zhao, R.: A Test case generation method based on state importance of EFSM for web application. In: 13th International Conference on Software Engineering and Knowledge Engineering, San Francisco Bay, USA, pp. 548–547 (2018). https://doi.org/10.18293/SEKE2018-177

  133. 133.

    Sant, J., Souter, A., Greenwald, L.: An exploration of statistical models for automated test case generation. In: Third International Workshop on Dynamic Analysis, pp. 1–7. ACM (2005). https://doi.org/10.1145/1083246.1083256

  134. 134.

    Gadkari, A.A., Mohalik, S., Shashidhar, K., Yeolekar, A., Suresh, J., Ramesh, S.: Automatic generation of test-cases using model checking for SL/SF models. In: 4th Model-Driven Engineering, Verification and Validation Workshop, pp. 33–46 (2007).

  135. 135.

    Akbari, Z., Khoshnevis, S., Mohsenzadeh, M.: A method for prioritizing integration testing in software product lines based on feature model. Int. J. Softw. Eng. Knowl. Eng. 27(04), 575–600 (2017). https://doi.org/10.1142/S0218194017500218

    Article  Google Scholar 

  136. 136.

    Zhang, H., Wu, H., Rountev, A.: Automated test generation for detection of leaks in Android applications. In: 11th International Workshop on Automation of Software Test, Austin, TX, pp. 64–70. ACM (2016). https://doi.org/10.1145/2896921.2896932

  137. 137.

    Sun, C.A., Zhao, Y., Pan, L., He, X., Towey, D.: A transformation-based approach to testing concurrent programs using UML activity diagrams. Softw. Pract. Exp. 46(4), 551–576 (2016). https://doi.org/10.1002/spe.2324

    Article  Google Scholar 

  138. 138.

    Arora, V., Bhatia, R., Singh, M.: Synthesizing test scenarios in UML activity diagram using a bio-inspired approach. Comput. Lang. Syst. Struct. 50, 1–19 (2017). https://doi.org/10.1016/j.cl.2017.05.002

    Article  Google Scholar 

  139. 139.

    Zhang, C., Cheng, H., Tang, E., Chen, X., Bu, L., Li, X.: Sketch-guided GUI test generation for mobile applications. In: International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, pp. 38–43. IEEE (2017). https://doi.org/10.1109/ASE.2017.8115616

  140. 140.

    Mohalik, S., Gadkari, A.A., Yeolekar, A., Shashidhar, K., Ramesh, S.: Automatic test case generation from Simulink/Stateflow models using model checking. Softw. Test. Verif. Reliab. 24(2), 155–180 (2014). https://doi.org/10.1002/stvr.1489

    Article  Google Scholar 

  141. 141.

    Enoiu, E.P., Sundmark, D., Čaušević, A., Feldt, R., Pettersson, P.: Mutation-based test generation for plc embedded software using model checking. In: IFIP International Conference on Testing Software and Systems, Graz, Austria, pp. 155–171. Springer (2016). https://doi.org/10.1007/978-3-319-47443-4_10

  142. 142.

    Gupta, P., Surve, P.: Model based approach to assist test case creation, execution, and maintenance for test automation. In: First International Workshop on End-to-End Test Script Engineering, Toronto, ON, Canada, pp. 1–7. ACM (2011). https://doi.org/10.1145/2002931.2002932

  143. 143.

    Peranandam, P., Raviram, S., Satpathy, M., Yeolekar, A., Gadkari, A., Ramesh, S.: An integrated test generation tool for enhanced coverage of Simulink/Stateflow models. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, pp. 308–311. IEEE (2012). https://doi.org/10.1109/DATE.2012.6176485

  144. 144.

    Vu, T.D., Pham, N.H., Nguyen, V.H.: A method for automated test cases generation from sequence diagrams and object constraint language for concurrent programs. VNU J. Comput. Sci. Commun. Eng. 31(3), 28–42 (2016)

    Google Scholar 

  145. 145.

    Wang, C., Pastore, F., Goknil, A., Briand, L., Iqbal, Z.: Automatic generation of system test cases from use case specifications. In: Proceedings of the 2015 International Symposium on Software Testing and Analysis, Baltimore, MD, USA, pp. 385–396. ACM (2015). https://doi.org/10.1145/2771783.2771812

  146. 146.

    Satpathy, M., Yeolekar, A., Ramesh, S.: Randomized directed testing (REDIRECT) for simulink/stateflow models. In: 8th ACM International Conference on Embedded Software, Atlanta, GA, USA, pp. 217–226. ACM (2008). https://doi.org/10.1145/1450058.1450088

  147. 147.

    Nguyen, C.D., Marchetto, A., Tonella, P.: Combining model-based and combinatorial testing for effective test case generation. In: International Symposium on Software Testing and Analysis, Minneapolis, MN, USA, pp. 100–110. ACM (2012). https://doi.org/10.1145/2338965.2336765

  148. 148.

    Belli, F., Beyazit, M., Takagi, T., Furukawa, Z.: Model-based mutation testing using pushdown automata. IEICE Trans. Inf. Syst. 95(9), 2211–2218 (2012). https://doi.org/10.1587/transinf.E95.D.2211

    Article  Google Scholar 

  149. 149.

    Bryce, R.C., Sampath, S., Memon, A.M.: Developing a single model and test prioritization strategies for event-driven software. IEEE Trans. Softw. Eng. 37(1), 48–64 (2011). https://doi.org/10.1109/TSE.2010.12

    Article  Google Scholar 

  150. 150.

    Emam, S.S., Miller, J.: Test case prioritization using extended digraphs. ACM Trans. Softw. Eng. Methodol. (TOSEM) 25(1), 6 (2015). https://doi.org/10.1145/2789209

    Article  Google Scholar 

  151. 151.

    Fraser, G., Wotawa, F.: Test-case prioritization with model-checkers. In: 25th Conference on IASTED International (2007)

  152. 152.

    Rapos, E.J., Dingel, J.: Using fuzzy logic and symbolic execution to prioritize UML-RT test cases. In: International Conference on Software Testing, Verification and Validation (ICST), Graz, Austria, pp. 1–10. IEEE (2015). https://doi.org/10.1109/ICST.2015.7102610

  153. 153.

    Tahat, L., Korel, B., Koutsogiannakis, G., Almasri, N.: State-based models in regression test suite prioritization. Softw. Qual. J. 25(3), 703–742 (2017). https://doi.org/10.1007/s11219-016-9330-x

    Article  Google Scholar 

  154. 154.

    Korel, B., Koutsogiannakis, G., Tahat, L.H.: Model-based test prioritization heuristic methods and their evaluation. In: 3rd International Workshop on Advances in Model-Based Testing, London, UK, pp. 34–43. ACM (2007). https://doi.org/10.1145/1291535.1291539

  155. 155.

    Morozov, A., Ding, K., Chen, T., Janschek, K.: Test suite prioritization for efficient regression testing of model-based automotive software. In: International Conference on Software Analysis, Testing and Evolution (SATE), Harbin, China, pp. 20–29. IEEE (2017). https://doi.org/10.1109/SATE.2017.11

  156. 156.

    Mahali, P., Mohapatra, D.P.: Model based test case prioritization using UML behavioural diagrams and association rule mining. Int. J. Syst. Assur. Eng. Manag. 9(5), 1063–1079 (2018). https://doi.org/10.1007/s13198-018-0736-7

    Article  Google Scholar 

  157. 157.

    Acharya, A.A., Mahali, P., Mohapatra, D.P.: Model based test case prioritization using association rule mining. In: Jain, L.C., Behera, H.S., Mandal, J.K., Mohapatra, D.P. (eds.) Computational Intelligence in Data Mining, vol. 3, pp. 429–440. Springer, Berlin (2015)

    Google Scholar 

  158. 158.

    Korel, B., Tahat, L.H., Harman, M.: Test prioritization using system models. In: 21st International Conference on Software Maintenance (ICSM'05), Budapest, Hungary, pp. 559–568. IEEE (2005). https://doi.org/10.1109/ICSM.2005.87

  159. 159.

    Shafie, M.L., Kadir, W.M.W.: Test case prioritization based on extended finite state machine model. J. Telecommun. Electron. Comput. Eng. (JTEC) 9(3–3), 125–132 (2017)

    Google Scholar 

  160. 160.

    Han, X., Zeng, H., Gao, H.: A heuristic model-based test prioritization method for regression testing. In: International Symposium on Computer, Consumer and Control, Taichung, Taiwan, pp. 886–889. IEEE, (2012). https://doi.org/10.1109/IS3C.2012.226

  161. 161.

    Panigrahi, C.R., Mall, R.: Model-based regression test case prioritization. ACM SIGSOFT Softw. Eng. Notes 35(6), 1–7 (2010). https://doi.org/10.1145/1874391.1874405

    Article  Google Scholar 

  162. 162.

    Gökçe, N., Belli, F., Eminli, M., Dincer, B.T.: Model-based test case prioritization using cluster analysis: a soft-computing approach. Turk. J. Electr. Eng. Comput. Sci. 23(3), 623–640 (2015)

    Article  Google Scholar 

  163. 163.

    Briand, L., Labiche, Y., Chen, K.: A multi-objective genetic algorithm to rank state-based test cases. In: International Symposium on Search Based Software Engineering, St. Petersburg, Russia, pp. 66–80. Springer (2013). https://doi.org/10.1007/978-3-642-39742-4_7

  164. 164.

    Rathore, L.K., Sao, N.: An integrated model based test case prioritization using UML sequence and activity diagram. Int. J. Res. Comput. Appl. Robot. 3(12), 31–41 (2015)

    Google Scholar 

  165. 165.

    Kundu, D., Sarma, M., Samanta, D., Mall, R.: System testing for object-oriented systems with test case prioritization. Softw. Test. Verif. Reliab. 19(4), 297–333 (2009). https://doi.org/10.1002/stvr.407

    Article  Google Scholar 

  166. 166.

    Acharya, A., Mohapatra, D.P., Panda, N.: Model based test case prioritization for testing component dependency in CBSD using UML sequence diagram. Int. J. Adv. Comput. Sci. Appl. 1(6), 108–113 (2010)

    Google Scholar 

  167. 167.

    Panthi, V., Mohapatra, D.P.: Generating and evaluating effectiveness of test sequences using state machine. Int. J. Syst. Assur. Eng. Manag. 8(2), 242–252 (2017). https://doi.org/10.1007/s13198-016-0419-1

    Article  Google Scholar 

  168. 168.

    Swain, R.K., Panthi, V., Mohapatra, D.P., Behera, P.K.: Prioritizing test scenarios from UML communication and activity diagrams. Innov. Syst. Softw. Eng. 10(3), 165–180 (2014). https://doi.org/10.1007/s11334-013-0228-5

    Article  Google Scholar 

  169. 169.

    Van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  170. 170.

    Wang, J.: Formal Methods in Computer Science. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  171. 171.

    Belli, F., Budnik, C.J., White, L.: Event-based modelling, analysis and testing of user interactions: approach and case study. Softw. Test. Verif. Reliab. 16(1), 3–32 (2006). https://doi.org/10.1002/stvr.335

    Article  Google Scholar 

  172. 172.

    Grochtmann, M., Grimm, K.: Classification trees for partition testing. Softw. Test. Verif. Reliab. 3(2), 63–82 (1993). https://doi.org/10.1002/stvr.4370030203

    Article  Google Scholar 

  173. 173.

    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Belin (2012)

    Book  Google Scholar 

  174. 174.

    Bittner, R.M., Fuentes, M., Rubinstein, D., Jansson, A., Choi, K., Kell, T.: mirdata: software for reproducible usage of datasets. In: International Society for Music Information Retrieval Conference (ISMIR), Delft, Netherlands, pp. 99–106 (2019). https://doi.org/10.5281/zenodo.3527750

  175. 175.

    Kochhar, P.S., Bissyandé, T.F., Lo, D., Jiang, L.: An empirical study of adoption of software testing in open source projects. In: 13th International Conference on Quality Software, Nanjing, China, pp. 103–112. IEEE (2013). https://doi.org/10.1109/QSIC.2013.57

  176. 176.

    Gousios, G., Pinzger, M., Deursen, A.v.: An exploratory study of the pull-based software development model. In: 36th International Conference on Software Engineering, Hyderabad, India, pp. 345–355 (2014). https://doi.org/10.1145/2568225.2568260

  177. 177.

    Elbaum, S., Malishevsky, A., Rothermel, G.: Incorporating varying test costs and fault severities into test case prioritization. In: Proceedings of the 23rd International Conference on Software Engineering, Toronto, Ontario, Canada, pp. 329–338. IEEE Computer Society (2001). https://doi.org/10.1109/ICSE.2001.919106

  178. 178.

    Huang, Y.-C., Peng, K.-L., Huang, C.-Y.: A history-based cost-cognizant test case prioritization technique in regression testing. J. Syst. Softw. 85(3), 626–637 (2012). https://doi.org/10.1016/j.jss.2011.09.063

    MathSciNet  Article  Google Scholar 

  179. 179.

    Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing techniques: An infrastructure and its potential impact. Empir. Softw. Eng. 10(4), 405–435 (2005). https://doi.org/10.1007/s10664-005-3861-2

    Article  Google Scholar 

  180. 180.

    Hanh, L.T.M., Binh, N.T., Tung, K.T.: Survey on mutation-based test data generation. Int. J. Electr. Comput. Eng. 5(5) (2015).

  181. 181.

    McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Reliab. 14(2), 105–156 (2004). https://doi.org/10.1002/stvr.294

    Article  Google Scholar 

  182. 182.

    Li, W., Le Gall, F., Spaseski, N.: A survey on model-based testing tools for test case generation. In: International Conference on Tools and Methods for Program Analysis, Moscow, Russia, pp. 77–89. Springer (2017). https://doi.org/10.1007/978-3-319-71734-0_7

  183. 183.

    Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL constraints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013). https://doi.org/10.1109/TSE.2013.17

    Article  Google Scholar 

  184. 184.

    Saeed, A., Ab Hamid, S.H., Sani, A.A.: Cost and effectiveness of search-based techniques for model-based testing: an empirical analysis. Int. J. Softw. Eng. Knowl. Eng. 27(04), 601–622 (2017). https://doi.org/10.1142/S021819401750022X

    Article  Google Scholar 

  185. 185.

    Hebig, R., Quang, T.H., Chaudron, M.R., Robles, G., Fernandez, M.A.: The quest for open source projects that use UML: mining GitHub. In: 19th International Conference on Model Driven Engineering Languages and Systems, Saint-malo, France, pp. 173–183. ACM (2016). https://doi.org/10.1145/2976767.2976778

  186. 186.

    Mendonca, M., Branco, M., Cowan, D.: SPLOT: software product lines online tools. In: 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, Orlando, FL, USA, pp. 761–762. ACM (2009). https://doi.org/10.1145/1639950.1640002

Download references

Acknowledgements

The research was funded by Universiti Teknologi Malaysia (UTM), and the Malaysian Ministry of Higher Education (MOHE) under the Industry-International Incentive Grant Scheme (IIIGS) (Vote Number: Q.J130000.3051.01M86), and the Academic Fellowship Scheme (SLAM). The authors would also like to express their deepest gratitude to the members of the Software Engineering Research Group (SERG) and the anonymous reviewers for their constructive comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Luqman Mohd-Shafie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Benoit Combemale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohd-Shafie, M.L., Kadir, W.M.N.W., Lichter, H. et al. Model-based test case generation and prioritization: a systematic literature review. Softw Syst Model (2021). https://doi.org/10.1007/s10270-021-00924-8

Download citation

Keywords

  • Model-based testing
  • Test case prioritization
  • Test case generation
  • Systematic literature review