Skip to main content

Using recommender systems to improve proactive modeling

Abstract

This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to progress when it cannot automatically determine the next modeling action to execute (e.g., add, delete, or edit). To evaluate our objective, we implemented a recommender system into the Proactive Modeling Engine, which is an add-on for the Generic Modeling Environment. We then conducted experiments to subjectively and objectively evaluate enhancements to the Proactive Modeling Engine. The results of our experiments show that extending proactive modeling with a recommender system results in an average reciprocal hit-rank of 0.871. Likewise, the enhancements yield a System Usability Scale rating of 77. Finally, user feedback shows that integrating recommender systems into DSMLs increases usability and learnability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    The tutorial for installing the software is located at the following location: https://github.com/SEDS/GAME/wiki/GAME-for-GME-Installation

  2. 2.

    The tutorial about the recommender system is located at https://github.com/SEDS/GAME/wiki/Tutorial-on-Working-with-GAME-Model-Intelligence

References

  1. 1.

    Adbc framework. https://github.com/DOCGroup/ADBC. Last Accessed Feb 2017

  2. 2.

    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 191–226. Springer, Berlin (2015)

  3. 3.

    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD ’93, pp. 207–216. ACM, New York (1993). https://doi.org/10.1145/170035.170072

  4. 4.

    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Advances in knowledge discovery and data mining. chap. Fast Discovery of Association Rules, pp. 307–328. American Association for Artificial Intelligence, Menlo Park (1996). http://dl.acm.org/citation.cfm?id=257938.257975

  5. 5.

    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1994). http://dl.acm.org/citation.cfm?id=645920.672836

  6. 6.

    Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt, D.C.: A platform-independent component modeling language for distributed real-time and embedded systems. In: Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications Symposium (RTAS05). San Francisco, CA (2005)

  7. 7.

    Bangor, A., Kortum, P., Miller, J.: Determining what individual sus scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

    Google Scholar 

  8. 8.

    Barriga, A., Rutle, A., Heldal, R.: Personalized and automatic model repairing using reinforcement learning. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 175–181. IEEE (2019)

  9. 9.

    Brooke, J.: Sus: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)

    Google Scholar 

  10. 10.

    Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  11. 11.

    Burgueño, L., Cabot, J., Gérard, S.: An lstm-based neural network architecture for model transformations. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 294–299. IEEE (2019)

  12. 12.

    Burke, R.: Hybrid Web Recommender Systems, pp. 377–408. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72079-9_12

  13. 13.

    Clegg, B.A., DiGirolamo, G.J., Keele, S.W.: Sequence learning. Trends Cognit. Sci. 2(8), 275–281 (1998)

    Article  Google Scholar 

  14. 14.

    Cook, S., Jones, G., Kent, S., Wills, A.: Domain-Specific Development with Visual Studio DSL tools, 1st edn. Addison-Wesley Professional (2007)

  15. 15.

    Cosentino, V., Gérard, S., Cabot Sagrera, J.: A model-based approach to gamify the learning of modeling. In: CEUR Workshop Proceedings (2017)

  16. 16.

    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)

    Article  Google Scholar 

  17. 17.

    Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems, pp. 1–15. Springer, Berlin (2000)

  18. 18.

    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156 (1996)

  20. 20.

    Gray, J., Neema, S., Tolvanen, J.P., Gokhale, A.S., Kelly, S., Sprinkle, J.: Domain-specific modeling. In: Handbook of Dynamic System Modeling 7, 7–1 (2007)

  21. 21.

    Hessellund, A., Czarnecki, K., Wa̧sowski, A.: Guided development with multiple domain-specific languages. In: Model Driven Engineering Languages and Systems, pp. 46–60 (2007)

  22. 22.

    Hill, J.H.: Measuring and reducing modeling effort in domain-specific modeling languages with examples. In: 2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems, pp. 120–129 (2011). https://doi.org/10.1109/ECBS.2011.22

  23. 23.

    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 135–142. ACM (2010)

  24. 24.

    Janota, M., Kuzina, V., Wa̧sowski, A.: Model construction with external constraints: an interactive journey from semantics to syntax. In: Model Driven Engineering Languages and Systems, pp. 431–445 (2008)

  25. 25.

    Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Conceptual modelling and its theoretical foundations. chap. In: Model Transformation By-example: A Survey of the First Wave, pp. 197–215. Springer, Berlin (2012). http://dl.acm.org/citation.cfm?id=2184207.2184222

  26. 26.

    Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 447–456. ACM, New York (2009). https://doi.org/10.1145/1557019.1557072

  27. 27.

    Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment (2001)

  28. 28.

    Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: International Conference on Human Centered Design, pp. 94–103. Springer, Berlin (2009)

  29. 29.

    Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, HT ’09, pp. 73–82. ACM, New York (2009). https://doi.org/10.1145/1557914.1557930

  30. 30.

    Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender systems in technology enhanced learning. In: Recommender Systems Handbook, pp. 387–415. Springer, Berlin (2011)

  31. 31.

    Ning, X., Karypis, G.: Slim: Sparse linear methods for top-n recommender systems. In: Data Mining (ICDM), 2011 IEEE 11th International Conference on, pp. 497–506. IEEE (2011)

  32. 32.

    Object Management Group: Object Constraint Language (2006)

  33. 33.

    O’Donovan, J., Smyth, B.: Trust in recommender systems. In: Proceedings of the 10th International Conference on Intelligent User Interfaces, IUI ’05, pp. 167–174. ACM, New York (2005). https://doi.org/10.1145/1040830.1040870

  34. 34.

    O’neil, E.J., O’neil, P.E., Weikum, G.: The lru-k page replacement algorithm for database disk buffering. In: ACM SIGMOD Record 22(2), 297–306 (1993)

  35. 35.

    Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  36. 36.

    Pati, T.: Auto-generating models from their semantics and constraints. Master’s thesis, Purdue University (2012)

  37. 37.

    Pati, T., Feiock, D.C., Hill, J.H.: Proactive modeling: auto-generating models from their semantics and constraints. In: Proceedings of the 2012 Workshop on Domain-Specific Modeling, DSM ’12, pp. 7–12. ACM, New York (2012). https://doi.org/10.1145/2420918.2420921

  38. 38.

    Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006). https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  39. 39.

    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)

    Book  Google Scholar 

  40. 40.

    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997). https://doi.org/10.1145/245108.245121

    Article  Google Scholar 

  41. 41.

    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  42. 42.

    Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, Berlin (2011)

    Book  Google Scholar 

  43. 43.

    Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010). https://doi.org/10.1007/s10462-009-9124-7

    MathSciNet  Article  Google Scholar 

  44. 44.

    Santos, O.C.: Educational Recommender Systems and Technologies: Practices and Challenges: Practices and Challenges. IGI Global (2011)

  45. 45.

    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)

  46. 46.

    Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158–166. ACM (1999)

  47. 47.

    Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., et al.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)

    Article  Google Scholar 

  49. 49.

    Sen, S., Baudry, B., Vangheluwe, H.: Domain-specific model editors with model completion. Models in Software Engineering, pp. 259–270 (2008)

  50. 50.

    Shani, G., Brafman, R.I., Heckerman, D.: An mdp-based recommender system. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI’02, pp. 453–460. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002). http://dl.acm.org/citation.cfm?id=2073876.2073930

  51. 51.

    Stephan, M.: Towards a cognizant virtual software modeling assistant using model clones. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 21–24. IEEE (2019)

  52. 52.

    Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-04425-0_58

    Book  Google Scholar 

  53. 53.

    Terveen, L., Hill, W.: Beyond recommender systems: helping people help each other. HCI New Millenn. 1(2001), 487–509 (2001)

    Google Scholar 

  54. 54.

    Töscher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the netflix grand prize. Netflix prize documentation, pp. 1–52 (2009)

  55. 55.

    Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website usability. In: Usability Professional Association Conference, pp. 1–12 (2004)

  56. 56.

    Vangheluwe, H., Sun, X., Bodden, E.: Domain-Specific Modelling with \({AToM}^{3}\). In: Proceedings of the th OOPSLA Workshop on Domain-Specific Modeling (2004)

  57. 57.

    Varró, D.: Model Transformation by Example. Springer, Berlin (2006). https://doi.org/10.1007/11880240_29

    Book  Google Scholar 

  58. 58.

    White, J., Schmidt, D.C., Mulligan, S.: The generic eclipse modeling system. In: Model-Driven Development Tool Implementers Forum, Tools, vol. 7 (2007)

  59. 59.

    White, J., Schmidt, D.C., Nechypurenko, A., Wuchner, E.: Domain-Specific Intelligence Frameworks for Assisting Modelers in Combinatorically Challenging Domains. GPCE4QoS (2006)

  60. 60.

    White, J., Schmidt, D.C., Nechypurenko, A., Wuchner, E.: Model intelligence: an approach to modeling guidance. UPGRADE 9(2), 22–28 (2008)

    Google Scholar 

  61. 61.

    Woerndl, W., Brocco, M., Eigner, R.: Context-aware recommender systems in mobile scenarios. Int. J. Inf. Technol. Web Eng. 4(1), 67–85 (2009)

    Article  Google Scholar 

  62. 62.

    Wu, S., Liu, Q., Wang, L., Tan, T.: Contextual operation for recommender systems. IEEE Trans. Know. Data Eng. 28(8), 2000–2012 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James H. Hill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Jordi Cabot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nair, A., Ning, X. & Hill, J.H. Using recommender systems to improve proactive modeling. Softw Syst Model 20, 1159–1181 (2021). https://doi.org/10.1007/s10270-020-00841-2

Download citation

Keywords

  • Domain-specific modeling languages
  • Proactive modeling
  • Recommender systems