Consolidation of database check constraints

  • Nikola Obrenović
  • Ivan Luković
  • Sonja Ristić
Regular Paper


Independent modeling of various modules of an information system (IS), and consequently database subschemas, may result in formal or semantic conflicts between the modules being modeled. Such conflicts may cause collisions between the integrated database schema of a whole IS and the modeled subschemas. In our previous work, we have proposed criteria and algorithms for identifying and resolving such conflicts so as to provide a consolidation of database subschemas with the integrated database schema with respect to various database concepts, such as domains, relation schemes, primary key constraints and referential integrity constraints. In this paper, we propose a new approach and algorithms for identifying conflicts and testing consolidation of subschemas with the integrated database schema against check constraints. The proposed approach is based on satisfiability modulo theory (SMT) solvers. Hereby, we propose the integration of SMT solvers into our MDSD tool, aimed at supporting a database schema integration process.


Database subschema consolidation Check constraint collision Implication problem SMT solver 



Research presented in this paper was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia as a part of the Grant III–44010: “Intelligent Systems for Software Product Development and Business Support Based on Models.”


  1. 1.
    Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An approach to developing complex database schemas using form types. Softw. Pract. Exp. 37, 1621–1656 (2007). CrossRefGoogle Scholar
  2. 2.
    Ristić, S.: Problem Research of Database Subschemas Consolidation. Dissertation, University of Novi Sad, Serbia (2003)Google Scholar
  3. 3.
    Luković, I., Ristić, S., Mogin, P., Pavićević, J.: Database schema integration process a methodology and aspects of its applying. Novi Sad J. Math. 36, 115–150 (2006). ISSN: 1450-5444Google Scholar
  4. 4.
    Luković, I., Mogin, P.: Lossless joins of relational database views. Rev. Res. 26, 49–73, Faculty of Science, University of Novi Sad (1996). ISSN: 1450-5444Google Scholar
  5. 5.
    Čeliković, M., Luković, I., Aleksić, S., Ivančević, V.: A MOF based meta-model and a concrete DSL syntax of IIS*Case PIM concepts. Comput. Sci. Inf. Syst. 9, 1075–1103 (2012). CrossRefGoogle Scholar
  6. 6.
    Luković, I.: Automated Generation of Relational Database Subschemas Using the Form Types. MSc thesis, University of Belgrade, Serbia (1993)Google Scholar
  7. 7.
    Obrenović, N., Luković, I.: An approach to consolidation of database check constraints. In: Proceedings of 4th International Conference on Information Society Technology and Management (ICIST), pp. 210–215 (2014).
  8. 8.
    CVC3 home page. Accessed 1 June 2016
  9. 9.
    Date, C.J., Darwen, H.: Types and the Relational Model. The Third Manifesto, 3rd edn. Addison Wesley, Reading (2006)Google Scholar
  10. 10.
    Elmasri, R., Navathe, B. S.: Database Systems: Models, Languages, Design and Application Programming, 6th ed. Pearson Global Edition (2011). ISBN 978-0-13-214498-8Google Scholar
  11. 11.
    Ristić, S., Aleksić, S., Čeliković, M., Luković, I.: Generic and standard database constraint meta-models. Comput. Sci. Inf. Syst. 11(2), 679–696 (2014). CrossRefGoogle Scholar
  12. 12.
    Mogin, P., Luković, I., Govedarica, M.: Database Design Principles, University of Novi Sad, Faculty of Technical Sciences and MP Stylos, Novi Sad, Serbia (2004). ISBN 86-80249-81-5Google Scholar
  13. 13.
    Ristić, S., Aleksić, S., Čeliković, M., Luković, I.: Meta-modeling of inclusion dependency constraints. In: Proceedings of the 6th Balkan Conference in Informatics (BCI’13), pp. 114–121, ACM, New York, NY, USA (2013).
  14. 14.
    Luković, I., Popović, A., Mostić, J., Ristić, S.: A tool for modeling form type check constraints and complex functionalities of business applications. Comput. Sci. Inf. Syst. 7, 359–385 (2010). CrossRefGoogle Scholar
  15. 15.
    Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979). CrossRefGoogle Scholar
  16. 16.
    Obrenović, N., Aleksić, S., Popović, A., Luković, I.: Transformations of check constraint PIM specifications. Comput. Inform. 31, 1045–1079 (2012)MathSciNetGoogle Scholar
  17. 17.
    Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London (1997)MATHGoogle Scholar
  18. 18.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of 3rd Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158 (1971).
  19. 19.
    Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom. Reason. 43, 81–119 (2009). MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    De Moura, L., Bjørner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira, M.V., Woodcock, J. (eds.) Formal Methods: Foundations and Applications, pp. 23–36. Springer, Berlin (2009). CrossRefGoogle Scholar
  21. 21.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., Van Maaren, H., Walsch, T. (eds.) Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  22. 22.
    Prover 9 web page. Accessed 1 June 2016
  23. 23.
    Vampire’s home page. Accessed 1 June 2016
  24. 24.
    Kovacs, L., Voronkov, A.: First-order theorem proving and VAMPIRE. In: Proceedings of 25th International Conference on Computer Aided Verification (CAV), pp. 1–35 (2013).
  25. 25.
    Frühwirth, T.: Welcome to constraint handling rules. In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Handling Rules, pp. 1–15. Springer, Berlin (2008). Google Scholar
  26. 26.
    Frühwirth, T.: Theory and practice of constraint handling rules. J. Logic Program. 37, 95–138 (1998). MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer, New York (2003). CrossRefMATHGoogle Scholar
  28. 28.
    MathSAT 5 home page. Accessed 1 June 2016
  29. 29.
    SMT-COMP 2012, competition results. Accessed 1 June 2016
  30. 30.
    Cok, D.R.: The SMT-LIB v2 language and tools: a tutorial. (2013). Accessed 1 June 2016
  31. 31.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard version 2.0. (2012). Accessed 1 June 2016
  32. 32.
    CVC3 user manual. Accessed 1 June 2016
  33. 33.
    Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Comput. Surv. 18, 323–364 (1986). CrossRefGoogle Scholar
  34. 34.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10, 334–350 (2001). CrossRefMATHGoogle Scholar
  35. 35.
    Li, W.-S., Clifton, C.: SEMINT: a tool for identifying attribute correspondences in heterogeneous databases using neural networks. Data Knowl. Eng. 33, 49–84 (2000). CrossRefMATHGoogle Scholar
  36. 36.
    Lee, M.-L., Ling, T.W.: Resolving constraint conflicts in the integration of entity-relationship schemas. In: Proceedings of Conceptual Modeling—ER’97, 16th International Conference on Conceptual Modeling, pp. 394–407 (1997).
  37. 37.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)Google Scholar
  38. 38.
    Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL models using constraint programming. In: Proceedings of 22nd IEEE/ACM International Conference on Automated Software Engineering, pp. 547–548 (2007).
  39. 39.
    Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using constraint programming. In: Proceedings of IEEE International Conference on Software Testing Verification and Validation (ICSTW), pp. 73–80 (2008).
  40. 40.
    Clavel, M., Egea, M., De Dios, M.A.G.: Checking unsatisfiability for OCL constraints. In: Proceedings of the Workshop The Pragmatics of OCL and Other Textual Specification Languages at MoDELS (2009).
  41. 41.
    The Yices SMT Solver. Accessed 1 June 2016
  42. 42.
    Bry, F., Decker, H., Manthey, R.: A uniform approach to constraint satisfaction and constraint satisfiability in deductive databases. In: Proceedings of Advances in Database Technology (EDBT), International Conference on Extending Database Technology, pp. 488–505 (1988)Google Scholar
  43. 43.
    Bidoit, M., Colazzo, D.: Testing XML constraint satisfiability. Electron. Notes Theor. Comput. Sci. 174, 45–61 (2007). CrossRefMATHGoogle Scholar
  44. 44.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Log. J. IGPL 8, 339–365 (2000). MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Formica, A.: Satisfiability of object-oriented database constraints with set and bag attributes. Inform. Syst. 28, 213–224 (2003). CrossRefGoogle Scholar
  46. 46.
    Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. J. Autom. Reason. 51, 109–128 (2013). MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nikola Obrenović
    • 1
  • Ivan Luković
    • 1
  • Sonja Ristić
    • 1
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations