Skip to main content
Log in

Formal modeling of biomedical signal acquisition systems: source of evidence for certification

  • Regular Paper
  • Published:
Software & Systems Modeling Aims and scope Submit manuscript

Abstract

Biomedical signal acquisition systems are software-intensive medical systems composed of processors, transducers, amplifiers, filters, and converters. We present in this article a formal modeling methodology of biomedical signal acquisition systems using Colored Petri Nets (CPN) and based on a frequency-domain approach. In the methodology, a reference model represents the main features of these medium risk systems. We argue that this kind of model is useful to assist manufacturers to reduce the number of defects in systems and to generate safety and effectiveness evidence throughout certification. Therefore, we describe two main contributions in this article. We provide a reference model of biomedical signal acquisition systems and show how manufacturers can generate evidence by means of an electrocardiography (ECG) case study. We carried out the case study by extending the reference model to represent the behavior of an ECG system using a basic cardiac monitor configuration based on the single-lead, heart rate monitor front end (AD8232) and the low power precision analog microcontroller, ARM cortex M3 with dual sigma-delta converters (ADUCM360). We verified the model against safety requirements with the model checking technique (safety evidence) and validated it by comparing output signals with a filtered ECG record available on the PHYSIONET ECG-ID database in the frequency and time domains (effectiveness evidence). This methodology enables manufacturers to identify defects in systems earlier in the development process aiming to decrease costs and development time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. MS refers to “multiset”.

References

  1. Alemzadeh, H., Iyer, R., Kalbarczyk, Z., Raman, J.: Analysis of safety-critical computer failures in medical devices. IEEE Secur. Priv. 11(4), 14–26 (2013)

    Article  Google Scholar 

  2. Analog Devices: Single-Lead, Heart Rate Monitor Front End Data Sheet AD8232 (2013)

  3. Analog Devices: Low Power, Precision Analog Microcontroller with Dual Sigma-Delta ADCs, ARM Cortex-M3, Data Sheet ADuCM360/ADuCM361 (2014)

  4. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based development of a pca infusion pump reference model: Generic infusion pump (gip) project. In: Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability, pp. 23–33 (2007)

  5. Barbosa, P., Morais, M., Galdino, K., Andrade, M., Gomes, L., Moutinho, F., de Figueiredo, J.: Towards medical device behavioural validation using petri nets. In: IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), pp. 4–10 (2013)

  6. Chandrakar, B., Yadav, O., Chandra, V.: A survey of noise removal techniques for ecg signals. Int. J. Adv. Res. Comput. Commun. Eng. 2(3), 1354–1357 (2013)

    Google Scholar 

  7. Chavan, M.S., Agarwala, R.A., Uplane, M.D.: Interference reduction in ecg using digital fir filters based on rectangular window. WSEAS Trans. Signal Process. 4(5), 340–349 (2008)

    Google Scholar 

  8. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA (1999)

    MATH  Google Scholar 

  9. Desel, J., Reisig, W.: The concepts of petri nets. Softw. Syst. Model. 14(2), 669–683 (2014)

    Article  Google Scholar 

  10. FDA: Medical device classification procedures (Revised as of April 2016)

  11. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R., Mietus, J., Moody, G., Peng, C.K., Stanley, H.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 23(101), 215–220 (2000)

    Google Scholar 

  12. Han, J., Ding, Q., Xiong, A., Zhao, X.: A state-space emg model for the estimation of continuous joint movements. IEEE Trans. Industr. Electron. 62(7), 4267–4275 (2015)

    Article  Google Scholar 

  13. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance cases and prescriptive software safety certification: a comparative study. Saf. Sci. 59, 55–71 (2013)

    Article  Google Scholar 

  14. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent Systems, 1st edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  15. Jensen, K., Kristensen, L.M.: Colored petri nets: a graphical language for formal modeling and validation of concurrent systems. Commun. ACM 58(6), 61–70 (2015)

    Article  Google Scholar 

  16. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transfer 9(3), 213–254 (2007)

    Article  Google Scholar 

  17. Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medical devices with model abstraction and refinement. Int. J. Softw. Tools Technol. Transfer 16(2), 191–213 (2014)

    Article  Google Scholar 

  18. Jiang, Z., Pajic, M., Mangharam, R.: Cyber-physical modeling of implantable cardiac medical devices. Proc. IEEE 100(1), 122–137 (2012)

    Article  Google Scholar 

  19. Kim, B., Ayoub, A., Sokolsky, O., Lee, I., Jones, P., Zhang, Y., Jetley, R.: Safety-assured development of the gpca infusion pump software. In: Proceedings of the Ninth ACM International Conference on Embedded Software, EMSOFT ’11, pp. 155–164 (2011)

  20. Kim, J., Kang, I., Choi, J., Lee, I., Kang, S.: Formal synthesis of application and platform behaviors of embedded software systems. Softw. Syst. Model. 14(2), 839–859 (2013)

    Article  Google Scholar 

  21. Kitchin, C., Counts, L.: A designer’s guide to instrumentation amplifiers, 3th edn. Analog Devices (2006)

  22. Kligfield, P., Gettes, L.S., Bailey, J.J., Childers, R., Deal, B.J., Hancock, E.W., van Herpen, G., Kors, J.A., Macfarlane, P., Mirvis, D.M., Pahlm, O., Rautaharju, P., Wagner, G.S.: Recommendations for the standardization and interpretation of the electrocardiogram: Part I: the electrocardiogram and its technology: a scientific statement from the american heart association electrocardiography and arrhythmias committee, council on clinical cardiology; the american college of cardiology foundation; and the heart rhythm society endorsed by the international society for computerized electrocardiology. Circulation 115(10), 1306–1324 (2007)

    Article  Google Scholar 

  23. Kloetzer, M., Mahulea, C., Belta, C., Silva, M.: An automated framework for formal verification of timed continuous petri nets. IEEE Trans. Ind. Inf. 6(3), 460–471 (2010)

    Article  Google Scholar 

  24. Koch, I.: Petri nets in systems biology. Softw. Syst. Model. 14(2), 703–710 (2014)

    Article  Google Scholar 

  25. Lee, Y.S., Kim, D.J., Kim, J.O., Kim, H.: New fmeca methodology using structural importance and fuzzy theory. IEEE Trans. Power Syst. 26(4), 2364–2370 (2011)

    Article  Google Scholar 

  26. Li, S., Xu, L.D., Wang, X.: A continuous biomedical signal acquisition system based on compressed sensing in body sensor networks. IEEE Trans. Ind. Inf. 9(3), 1764–1771 (2013)

    Article  Google Scholar 

  27. Li, T., Tan, F., Wang, Q., Bu, L., Cao, J., Liu, X.: From offline toward real time: a hybrid systems model checking and cps codesign approach for medical device plug-and-play collaborations. IEEE Trans. Parallel Distrib. Syst. 25(3), 642–652 (2014)

    Article  Google Scholar 

  28. Lin, C.L., Shen, W.: Generation of assurance cases for medical devices. In: Lee, R. (ed.) Computer and Information Science, Studies in Computational Intelligence, vol. 566, pp. 127–140. Springer, Berlin (2015)

    Chapter  Google Scholar 

  29. Mashkoor, A.: Model-driven development of high-assurance active medical devices. Soft. Qual. J. 24(3), 571–596 (2016)

    Article  Google Scholar 

  30. Méry, D., Singh, N.K.: Formal specification of medical systems by proof-based refinement. ACM Trans. Embed. Comput. Syst. 12(1), 1–25 (2013)

    Article  Google Scholar 

  31. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised), 1th edn. MIT Press (1997)

  32. Mitros, P.: Filters with decreased passband error. IEEE Trans. Circuits Syst. II Express Br. 63(2), 131–135 (2016)

    Article  Google Scholar 

  33. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  34. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-driven safety analysis of closed-loop medical systems. IEEE Trans. Ind. Inf. 10(1), 3–16 (2014)

    Article  Google Scholar 

  35. Pelgrom, M.: Analog-to-Digital Conversion, 1st edn. Springer, Netherlands (2010)

    Book  Google Scholar 

  36. Qadir, J., Hasan, O.: Applying formal methods to networking: theory, techniques, and applications. IEEE Commun. Surv. Tutor. 17(1), 256–291 (2015)

    Article  Google Scholar 

  37. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform—Algorithms and Applications, 1st edn. Springer, Netherlands (2010)

    Book  MATH  Google Scholar 

  38. Razzaq, N., Sheikh, S.A.A., Salman, M., Zaidi, T.: An intelligent adaptive filter for elimination of power line interference from high resolution electrocardiogram. IEEE Access 4, 1676–1688 (2016)

    Article  Google Scholar 

  39. Schlechtingen, M., Santos, I.F., Achiche, S.: Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans. Sustain. Energy 4(3), 671–679 (2013)

    Article  Google Scholar 

  40. Sedra, A.S., Smith, K.C.: Microelectronic Circuits, 6th edn. Oxford University Press, Oxford (2009)

    Google Scholar 

  41. Seifi, Y., Suriadi, S., Foo, E., Boyd, C.: Analysis of two authorization protocols using colored petri nets. Int. J. Inf. Secur. 14(3), 221–247 (2015)

    Article  Google Scholar 

  42. Silva, L.C., Almeida, H.O., Perkusich, A., Perkusich, M.: A model-based approach to support validation of medical cyber-physical systems. Sensors 15(11), 27625–27670 (2015)

    Article  Google Scholar 

  43. Sobrinho, A., Perkusich, A., Dias da Silva, L., Cordeiro, T., Rego, J., Cunha, P.: Towards medical device certification: a colored petri nets model of a surface electrocardiography device. In: 40th Annual Conference of the IEEE Industrial Electronics Society, pp. 2645–2651 (2014)

  44. Sobrinho, A., Perkusich, A., Dias da Silva, L., Cunha, P.: Using colored petri nets for the requirements engineering of a surface electrogastrography system. In: IEEE International Conference on Industrial Informatics (INDIN), pp. 221–226 (2014)

  45. Sun, X., Zhang, Y.: Design and implementation of portable ecg and body temperature monitor. In: International Symposium on Computer, Consumer and Control, pp. 188–192 (2014)

  46. Tran, T.V., Chung, W.Y.: IEEE-802.15.4-based low-power body sensor node with RF energy harvester. Bio Med. Mater. Eng. 24, 3503–3510 (2014)

    Article  Google Scholar 

  47. Wolf, K.: The petri net twist in explicit model checking. Softw. Syst. Model. 14(2), 711–717 (2014)

    Article  Google Scholar 

  48. Wu, D., Schnieder, E.: Scenario-based system design with colored petri nets: an application to train control systems. Softw. Syst. Model. 1–23 (2016). doi:10.1007/s10270-016-0517-1

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo a Pesquisa de Alagoas (FAPEAL) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Sobrinho.

Additional information

Communicated by Dr. Moreira and Dr. Schätz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobrinho, A., da Silva, L.D., Perkusich, A. et al. Formal modeling of biomedical signal acquisition systems: source of evidence for certification. Softw Syst Model 18, 1467–1485 (2019). https://doi.org/10.1007/s10270-017-0616-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-017-0616-7

Keywords

Navigation