Skip to main content
Log in

The next evolution of MDE: a seamless integration of machine learning into domain modeling

  • Regular Paper
  • Published:
Software & Systems Modeling Aims and scope Submit manuscript

Abstract

Machine learning algorithms are designed to resolve unknown behaviors by extracting commonalities over massive datasets. Unfortunately, learning such global behaviors can be inaccurate and slow for systems composed of heterogeneous elements, which behave very differently, for instance as it is the case for cyber-physical systems and Internet of Things applications. Instead, to make smart decisions, such systems have to continuously refine the behavior on a per-element basis and compose these small learning units together. However, combining and composing learned behaviors from different elements is challenging and requires domain knowledge. Therefore, there is a need to structure and combine the learned behaviors and domain knowledge together in a flexible way. In this paper we propose to weave machine learning into domain modeling. More specifically, we suggest to decompose machine learning into reusable, chainable, and independently computable small learning units, which we refer to as microlearning units. These microlearning units are modeled together with and at the same level as the domain data. We show, based on a smart grid case study, that our approach can be significantly more accurate than learning a global behavior, while the performance is fast enough to be used for live learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://greycat.ai/.

  2. http://modeling.kevoree.org/.

  3. https://www.jetbrains.com/idea/.

  4. https://github.com/kevoree-modeling/dsl.

  5. http://velocity.apache.org/.

  6. http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households.

  7. https://github.com/kevoree-modeling/experiments.

  8. https://hbase.apache.org/.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint (2016). arXiv:1603.04467

  2. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010). doi:10.1016/j.pmcj.2009.06.002

    Article  Google Scholar 

  3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  4. Bishop, C.M.: Model-based machine learning. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 371(1984) (2012). doi:10.1098/rsta.2012.0222. http://rsta.royalsocietypublishing.org/content/371/1984/20120222

  5. Budinsky, F., Steinberg, D., Ellersick, R.: Eclipse Modeling Framework: A Developer’s Guide (2003)

  6. Carstoiu, D., Cernian, A., Olteanu, A.: Hadoop hbase-0.20. 2 performance evaluation. In: 2010 4th International Conference on New Trends in Information Science and Service Science (NISS), pp. 84–87. IEEE (2010)

  7. Chen, P.P.S.: The entity-relationship model—toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976). doi:10.1145/320434.320440

    Article  MathSciNet  Google Scholar 

  8. Choetkiertikul, M., Dam, H.K., Tran, T., Ghose, A.: Predicting delays in software projects using networked classification. In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 353–364. IEEE (2015)

  9. Daly, C.: Emfatic language reference (2004)

  10. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’00, pp. 71–80. ACM, New York, NY, USA (2000). doi:10.1145/347090.347107

  11. Durgesh, K.S., Lekha, B.: Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12(1), 1–7 (2010)

    Google Scholar 

  12. Esbensen, K.H., Geladi, P.: Principles of proper validation: use and abuse of re-sampling for validation. J. Chemom. 24(3–4), 168–187 (2010). doi:10.1002/cem.1310

    Article  Google Scholar 

  13. Fink, C.R., Chou, D.S., Kopecky, J.J., Llorens, A.J.: Coarse- and fine-grained sentiment analysis of social media text. Johns Hopkins APL Tech. Dig. 30(1), 22–30 (2011)

    Google Scholar 

  14. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel, J.: Kevoree modeling framework (KMF): efficient modeling techniques for runtime use. CoRR (2014). arxiv:1405.6817

  15. Gerbessiotis, A., Valiant, L.: Direct bulk-synchronous parallel algorithms. J. Parallel Distrib. Comput. 22(2), 251–267 (1994). doi:10.1006/jpdc.1994.1085. http://www.sciencedirect.com/science/article/pii/S0743731584710859

  16. Group, O.M.: Tech. rep

  17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). doi:10.1145/1656274.1656278

    Article  Google Scholar 

  18. Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, W., Chen, E.: Chronos: A graph engine for temporal graph analysis. In: Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14, pp. 1:1–1:14. ACM, New York, NY, USA (2014). doi:10.1145/2592798.2592799

  19. Hartmann, T., Fouquet, F., Klein, J., Traon, Y.L., Pelov, A., Toutain, L., Ropitault, T.: Generating realistic smart grid communication topologies based on real-data. In: 2014 IEEE International Conference on Smart Grid Communications, SmartGridComm 2014, Venice, Italy, November 3–6, 2014, pp. 428–433 (2014). doi:10.1109/SmartGridComm.2014.7007684

  20. Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Barais, O., Traon, Y.L.: A native versioning concept to support historized models at runtime. In: Model-Driven Engineering Languages and Systems—17th International Conference, MODELS 2014, Valencia, Spain, September 28–October 3, 2014. Proceedings, pp. 252–268 (2014). doi:10.1007/978-3-319-11653-2_16

  21. Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Traon, Y.L.: Reasoning at runtime using time-distorted contexts: A models@run.time based approach. In: The 26th International Conference on Software Engineering and Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1–3, 2013., pp. 586–591 (2014)

  22. Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J., Traon, Y.L.: Stream my models: reactive peer-to-peer distributed models@run.time. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30–October 2, 2015, pp. 80–89 (2015). doi:10.1109/MODELS.2015.7338238

  23. Hartmann, T., Moawad, A., Fouquet, F., Reckinger, Y., Mouelhi, T., Klein, J., Le Traon, Y.: Suspicious electric consumption detection based on multi-profiling using live machine learning. In: 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm) (2015)

  24. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Proceedings of the First International Conference on Pervasive Computing, Pervasive ’02, pp. 167–180. Springer, London (2002). http://dl.acm.org/citation.cfm?id=646867.706693

  25. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). doi:10.1145/963770.963772

    Article  Google Scholar 

  26. Hido, S., Tokui, S., Oda, S.: Jubatus: An open source platform for distributed online machine learning. In: NIPS 2013 Workshop on Big Learning, Lake Tahoe (2013)

  27. Hug, T., Lindner, M., Bruck, P.A.: Microlearning: emerging concepts, practices and technologies after e-learning. In: Proceedings of Microlearning, vol. 5 (2005)

  28. Kent, S.: Model driven engineering. In: Proceedings of the Third International Conference on Integrated Formal Methods, IFM ’02, pp. 286–298. Springer, London (2002). http://dl.acm.org/citation.cfm?id=647983.743552

  29. Kohtes, R.: From Valence to Emotions: How Coarse Versus Fine-Grained Online Sentiment Can Predict Real-World Outcomes. Anchor Academic Publishing, Hamburg (2014)

    Google Scholar 

  30. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification. W3c recommendation, W3C (1999)

  31. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning and data mining in the cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

    Article  Google Scholar 

  32. Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Graphlab: a new framework for parallel machine learning. CoRR (2014). arxiv:1408.2041

  33. Meta object facility (MOF) 2.5 core specification (2015). Version 2.5

  34. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  35. Moawad, A.: Towards ambient intelligent applications using models@run.time and machine learning for context-awareness. Ph.D. thesis, University of Luxembourg (2016)

  36. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@run.time to support dynamic adaptation. Computer 42(10), 44–51 (2009). doi:10.1109/MC.2009.327

    Article  Google Scholar 

  37. Norvig, P.: Artificial Intelligence. NewScientist (27) (2012)

  38. Object Management Group: OMG Unified Modeling Language, Version 2.5. http://www.omg.org/spec/UML/2.5/PDF (2015)

  39. Ohmann, T., Herzberg, M., Fiss, S., Halbert, A., Palyart, M., Beschastnikh, I., Brun, Y.: Behavioral resource-aware model inference. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp. 19–30. ACM (2014)

  40. Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making sense of business process descriptions: an experimental comparison of graphical and textual notations. J. Syst. Softw. 85(3), 596–606 (2012)

    Article  Google Scholar 

  41. Rothenberg, J.: Artificial intelligence, simulation and modeling. In: The Nature of Modeling, pp. 75–92. Wiley, New York (1989). http://dl.acm.org/citation.cfm?id=73119.73122

  42. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07, pp. 687–696. ACM, New York, NY, USA (2007). doi:10.1145/1281192.1281266

  43. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In: Requirements Engineering Conference (RE), 2013 21st IEEE International, pp. 92–104. IEEE (2013)

  44. Vierhauser, M., Rabiser, R., Grunbacher, P., Egyed, A.: Developing a DSL-based approach for event-based monitoring of systems of systems: experiences and lessons learned. In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 715–725. IEEE (2015)

  45. W3C, W.W.W.C.: Owl 2 web ontology language. structural specification and functional-style syntax (2009)

  46. Wernick, M.N., Yang, Y., Brankov, J.G., Yourganov, G., Strother, S.C.: Machine learning in medical imaging. IEEE Signal Process. Mag. 27(4), 25–38 (2010). doi:10.1109/MSP.2010.936730

    Article  Google Scholar 

  47. Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: a recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25(10), 2390–2403 (2013)

    Article  Google Scholar 

  48. Zhang, B., Zhang, L.: Multi-granular representation-the key to machine intelligence. In: 3rd International Conference on Intelligent System and Knowledge Engineering, 2008. ISKE 2008, vol. 1, pp. 7–7 (2008). doi:10.1109/ISKE.2008.4730887

  49. Zhang, B., Zhang, L.: Multi-granular representation-the key to machine intelligence. In: 3rd International Conference on Intelligent System and Knowledge Engineering, 2008. ISKE 2008, vol. 1, pp. 7–7. IEEE (2008)

  50. Zhu, H., Shan, L., Bayley, I., Amphlett, R.: Formal descriptive semantics of uml and its applications. In: UML 2 Semantics and Applications p. 95 (2009)

Download references

Acknowledgements

Funding was provided by National Research Fund Luxembourg (Grant No. 6816126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartmann.

Additional information

Communicated by Dr. Gabor Karsai.

The research leading to this publication is supported by the National Research Fund Luxembourg (Grant 6816126) and Creos Luxembourg S.A. under the SnT-Creos partnership program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, T., Moawad, A., Fouquet, F. et al. The next evolution of MDE: a seamless integration of machine learning into domain modeling. Softw Syst Model 18, 1285–1304 (2019). https://doi.org/10.1007/s10270-017-0600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-017-0600-2

Keywords

Navigation