Skip to main content

Mining team compositions for collaborative work in business processes


Process mining aims at discovering processes by extracting knowledge about their different perspectives from event logs. The resource perspective (or organisational perspective) deals, among others, with the assignment of resources to process activities. Mining in relation to this perspective aims to extract rules on resource assignments for the process activities. Prior research in this area is limited by the assumption that only one resource is responsible for each process activity, and hence, collaborative activities are disregarded. In this paper, we leverage this assumption by developing a process mining approach that is able to discover team compositions for collaborative process activities from event logs. We evaluate our novel mining approach in terms of computational performance and practical applicability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Documentations about JBoss Drools is available at

  2. A screencast of the DpilMiner is accessible online at

  3. The event log is available for download at

  4. DOI:10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.


  1. Adamo, J.: Data Mining for Association Rules and Sequential Patterns—Sequential and Parallel Algorithms. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) International Conference on Management of Data, pp. 207–216. ACM Press, Washington, D.C. (1993)

  3. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power in unity: forming teams in large-scale community systems. In: Huang, J., Koudas, N., Jones, G.J.F., Wu, X., Collins-Thompson, K., An, A. (eds.) CIKM, pp. 599–608. ACM Press, Ontario (2010)

  4. Baumgrass, A., Strembeck, M.: Bridging the gap between role mining and role engineering via migration guides. Inf. Sec. Tech. Rep. 17(4), 148–172 (2013)

    Article  Google Scholar 

  5. Baykasoglu, A., Dereli, T., Das, S.: Project team selection using fuzzy optimization approach. Cybern. Syst. 38(2), 155–185 (2007)

    Article  MATH  Google Scholar 

  6. Bose, J.C., Maggi, F.M., van der Aalst, W.: Enhancing declare maps based on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) Business Process Management. Lecture Notes in Computer Science, pp. 97–112. Springer, Berlin (2013)

  7. Bussler, C.: Organisationsverwaltung in Workflow-Management-Systemen. Dt. University-Verlag, Wiesbaden (1998)

    Book  MATH  Google Scholar 

  8. Cabanillas, C., Resinas, M., Mendling, J., Cortés, A.R.: Automated team selection and compliance checking in business processes. In: Pfahl, D., Bendraou, R., Turner, R., Kuhrmann, M., Hebig, R., Maggi, F.M. (eds.) Proceedings of the International Conference on Software and System Process (ICSSP), pp. 42–51. ACM, New York (2015)

  9. Datta, A., Yong, J.T.T., Ventresque, A.: T-RecS: team recommendation system through expertise and cohesiveness. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web (WWW), pp. 201–204. ACM, Hyderabad (2011)

  10. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1), 29–57 (2015)

    Article  Google Scholar 

  11. Dorn, C., Dustdar, S.: Composing near-optimal expert teams: a trade-off between skills and connectivity. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM, pp. 472–489. Springer, Berlin (2010)

  12. Dorn, C., Skopik, F., Schall, D., Dustdar, S.: Interaction mining and skill-dependent recommendations for multi-objective team composition. Data Knowl. Eng. 70(10), 866–891 (2011)

    Article  Google Scholar 

  13. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin (2013)

    Book  Google Scholar 

  14. Dustdar, S.: Caramba: process-aware collaboration system supporting Ad hoc and collaborative processes in virtual teams. Distrib. Parallel Databases 15(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  15. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) Agent-Oriented Software Engineering IV, pp. 214–230. Springer, Berlin (2003)

  16. Fitzpatrick, E.L., Askin, R.G.: Forming effective worker teams with multi-functional skill requirements. Comput. Ind. Eng. 48, 593–608 (2005)

    Article  Google Scholar 

  17. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif. Intell. 19(1), 17–37 (1982)

    Article  Google Scholar 

  18. Guimarães, N., Antunes, P., Pereira, A.: The integration of workflow systems and collaboration tools. In: Doğaç, A., Kalinichenko, L., Tamer Özsu, M., Sheth, A. (eds.) Workflow Management Systems and Interoperability, NATO ASI Series, vol. 164, pp. 222–245. Springer (1998)

  19. Hanachi, C., Gaaloul, W., Mondi, R.: Performative-based mining of workflow organizational structures. In: Huemer, C., Lops, P. (eds.) EC-Web, pp. 63–75. Springer, Vienna (2012)

  20. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2004)

    Article  Google Scholar 

  21. Jin, T., Wang, J., Wen, L.: Organizational modeling from event logs. In: Sixth International Conference on Grid and Cooperative Computing (GCC), pp. 670–675. IEEE, Urumchi (2007)

  22. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot world cup initiative. In: International Conference on Autonomous Agents, pp. 340–347 (1997)

  23. Lappas, T., Liu, K., Terzi, E.: Finding a Team of Experts in Social Networks. In: Elder, J.F. IV., Fogelman-Soulie, F., Flach, P.A., Zaki, M.J. (eds.) Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining, pp. 467–476. ACM, Paris (2009)

  24. Leitner, M., Baumgrass, A., Schefer-Wenzl, S., Rinderle-Ma, S., Strembeck, M.: A case study on the suitability of process mining to produce current-state RBAC models. In: BPM Workshops, pp. 719–724 (2012)

  25. Ly, L.T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from event-based data. In: BPM Workshops, pp. 177–190 (2006)

  26. Maggi, F.M., Bose, J.C., van der Aalst, W.: Efficient discovery of understandable declarative process models from event logs. In: Ralyte, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) Advanced Information Systems Engineering (CAiSE), pp. 270–285. Springer, Switzerland (2012)

  27. Meyer, A.: Resource Perspective in BPMN - Extending BPMN to Support Resource Management and Planning. Master’s thesis, Hasso Plattner Institute (2009)

  28. Nakatumba, J., van der Aalst, W.: Analyzing resource behavior using process mining. In: BPM Workshops, pp. 69–80 (2010)

  29. Nurcan, S.: Analysis and design of co-operative work processes: a framework. Inf. Softw. Technol. 40(3), 143–156 (1998)

    Article  Google Scholar 

  30. OMG: BPMN 2.0. Recommendation, OMG (2011)

  31. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, O., Falcão e Cunha, J. (eds.) Advanced Information Systems Engineering (CAiSE), pp. 216–232. Springer, (2005)

  32. Salas, E., Stagl, K.C., Burke, C.S., Goodwin, G.F.: Fostering team effectiveness in organizations: toward an integrative theoretical framework. Neb. Symp. Motiv. 52, 185–243 (2007)

    Google Scholar 

  33. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. BPMDS 214, 37–52 (2015)

    Google Scholar 

  34. Singh, P.V.: The small-world effect: the influence of macro-level properties of developer collaboration networks on open-source project success. ACM Trans. Softw. Eng. Methodol. 20(2), 6:1–6:27 (2010)

    Article  Google Scholar 

  35. Song, M., Van der Aalst, W.M.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)

    Article  Google Scholar 

  36. Tambe, M.: Teamwork in Real-World, Dynamic Environments. University of Southern California, Information Sciences Institute (1996)

  37. Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G.A., Marsella, S.C., Muslea, I.: Building agent teams using an explicit teamwork model and learning. Artif. Intell. 110(2), 215–239 (1999)

    Article  MATH  Google Scholar 

  38. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  39. van der Aalst, W.M.P., Kumar, A.: A reference model for team-enabled workflow management systems. Data Knowl. Eng. 38(3), 335–363 (2001)

    Article  MATH  Google Scholar 

  40. Van Der Aalst, W.M., Reijers, H.A., Song, M.: Discovering social networks from event logs. CSCW 14(6), 549–593 (2005)

    Google Scholar 

  41. Van Der Aalst, W.M., Ter Hofstede, A.H.: Yawl: yet another workflow language. Inf. Syst. 30(4), 245–275 (2005)

    Article  Google Scholar 

  42. Verbeek, E., Buijs, J., van Dongen, B., van der Aalst, W.: XES, xESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) Information Systems Evolution, pp. 60–75. Springer, Berlin (2011)

  43. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Berlin (2012)

    Book  Google Scholar 

  44. Yang, D.N., Chen, Y.L., Lee, W.C., Chen, M.S.: On social-temporal group query with acquaintance constraint. Proc. VLDB Endow. 4(6), 397–408 (2011)

    Article  Google Scholar 

  45. Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: Bertino, E., Chen, S.-C., Aberer, K., Krishnamurthy, P., Kantarcioglu, M. (eds.) Collaborative Computing: Networking, Applications and Worksharing, pp. 94–103. ICST/IEEE, Miami (2014)

  46. Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen, Z., Li, T. (eds.) Foundations of Intelligent Systems, pp. 701–708. Springer, Berlin (2014)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefan Schönig.

Additional information

Communicated by Dr. Selmin Nurcan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schönig, S., Cabanillas, C., Di Ciccio, C. et al. Mining team compositions for collaborative work in business processes. Softw Syst Model 17, 675–693 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Business process management
  • Declarative process mining
  • Event log analysis
  • Resource perspective
  • Teamwork