Software & Systems Modeling

, Volume 12, Issue 4, pp 745–764 | Cite as

A component-based end-to-end simulation of the Linux file system

  • Hai NguyenEmail author
  • Amy Apon
Theme Section


The Linux file system is designed with components utilizing a layered architecture. The upper components hide details of the lower components, and each layer presents unified and simple interfaces to the layers above and below. This design helps Linux to be flexible as well as to provide support for multiple types of storage devices. In this paper, this component architecture is used to develop a realistic simulation without having to model lower level details of the hardware layer or particular storage devices. A detailed simulation-based performance model of the Linux ext3 file system has been developed using Colored Petri Nets. The extensive validation study using the model obtains results that are close to the expected behavior of the real file system. The model demonstrates that file system parameters have a significant impact on the I/O performance.


Colored Petri Net File system modeling File system simulation Petri Net Linux file system L2 cache model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryant, R.E.: Data-Intensive Supercomputing: The Case for DISC, Carnegie Mellon University, Pittsburgh CMU-CS-07-128 (2007)Google Scholar
  2. 2.
    Gorton I., Greenfield P., Szalay A., Williams R.: Data-intensive computing in the 21st century. Computer 41, 30–32 (2008)CrossRefGoogle Scholar
  3. 3.
    Johnson, M.K.: Whitepaper: Red Hat’s New Journaling File System: Ext3. (2001)
  4. 4.
    Ratzer, A.V., et~al.: CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets. In: Proceedings of the 24th international conference on Applications and theory of Petri nets, Eindhoven, The Netherlands, pp. 450–462 (2003)Google Scholar
  5. 5.
    Nguyen, H.Q., Apon, A.: Hierarchical Performance Measurement and Modeling of the Linux File System. In: Proceeding of the second joint WOSP/SIPEW international conference on Performance engineering, Karlsruhe, Germany, pp. 73–84 (2011)Google Scholar
  6. 6.
    Bucy, J.S., Ganger, G.R.: The Disksim Simulation Environment Version 3.0 Reference Manual. School of Computer Science, Carnegie Mellon University, Pittsburgh (2003)Google Scholar
  7. 7.
    Griffin, J.L., Schindler, J., Schlosser, S.W., Bucy, J.C., Ganger, G.R.: Timing-Accurate Storage Emulation. In: Proceedings of the 1st USENIX Conference on File and Storage Technologies, Monterey, CA, p. 6 (2002)Google Scholar
  8. 8.
    Griffin, J.L., Ganger, G.R.: Timing-Accurate Storage Emulation: Evaluating Hypothetical Storage Components in Real Computer Systems. Thesis (PhD), Carnegie Mellon University, Carnegie Mellon University, Pittsburgh, PA (2004)Google Scholar
  9. 9.
    Maghraoui, K.E., Kandiraju, G., Jann, J., Pattnaik, P.: Modeling and Simulating Flash Based Solid-State Disks for Operating Systems. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, San Jose, California, USA, pp. 15–26 (2010)Google Scholar
  10. 10.
    Zhaobin, L., Haitao, L.: Modeling and Performance Evaluation of Hybrid Storage I/O in Data Grid. In: IFIP International Conference on Network and Parallel Computing Workshops, 2007. NPC Workshops, pp. 624–629 (2007)Google Scholar
  11. 11.
    Wang, Y., Kaeli, D.: Execution-Driven Simulation of Network Storage Systems. In: Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, pp. 604–611 (2004)Google Scholar
  12. 12.
    Molero, X., Silla, F., Santonja, V., Duato, J.: Modeling and Simulation of Storage Area Networks. In: Proceedings of the 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000, pp. 307–314 (2000)Google Scholar
  13. 13.
    Routray, R., Gopisetty, S., Galgali, P., Modi, A., Nadgowda, S.: ISAN: Storage Area Network Management Modeling Simulation. In: International Conference on Networking, Architecture, and Storage, 2007. NAS 2007, pp. 199–208 (2007)Google Scholar
  14. 14.
    Staley, J., Muknahallipatna, S., Johnson, H.: Fibre Channel Based Storage Area Network Modeling Using Opnet for Large Fabric Simulations: Preliminary Work. In: 32nd IEEE Conference on Local Computer Networks, 2007. LCN 2007, pp. 234–236 (2007)Google Scholar
  15. 15.
    Aizikowitz, N., Glikson, A., Landau, A., Mendelson, B., Sandbank, T.: Component-Based Performance Modeling of a Storage Area Network. In: Proceedings of the 37th conference on Winter simulation, Orlando, FL, pp. 2417–2426 (2005)Google Scholar
  16. 16.
    Hung-Chang, H., Chung-Ta, K.: Modeling and Evaluating Peer-to-Peer Storage Architectures. In: Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS 2002, Abstracts and CD-ROM, pp. 24–29 (2002)Google Scholar
  17. 17.
    DeRosa, P., Shen, K., Stewart, C., Pearson, J.: Realism and Simplicity: Disk Simulation for Instructional Os Performance Evaluation. In: Proceedings of the 37th SIGCSE technical Symposium on Computer Science Education, Houston, TX, USA, pp. 308–312 (2006)Google Scholar
  18. 18.
    Ali, A., Souza, R.D.: Modeling and Simulation of Hard Disk Dive Final Assembly Using a Hdd Template. In: Proceedings of the 39th Conference on Winter simulation: 40 years! The best is Yet to Come, Washington, DC, pp. 1641–1650 (2007)Google Scholar
  19. 19.
    Thekkath C., Wilkes J., Lazowska E.: Techniques for file system simulation. Softw. Pract. Exp. 24(11), 981–999 (1994)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Figueiredo, R., Clavijo, D., Xu, Y., Zhao, M.: Towards simulation of parallel file system scheduling algorithms with PFSsim. In: Proceedings of the 7th IEEE International Workshop on Storage Network Architectures and Parallel I/O, Denver, CO, May 2011Google Scholar
  21. 21.
    Jones, M.T.: Anatomy of the Linux File System (2007).
  22. 22.
    Linux Kernel Organization.: Linux Kernel Source Code (2011).
  23. 23.
    International Data Corporation: IDC Press Release (2010).
  24. 24.
    Stansberry, M.: Data Center Decisions 2010 Survey: Virtualization Drives Budget Rebound (2010).
  25. 25.
    Norcott, W.D., Capps, D.: Iozone Filesystem Benchmark (2011).
  26. 26.
    Murray, N., Horman, N.: Understanding Virtual Memory (2004).
  27. 27.
    Pommnitz, J.: Kernel Level Exception Handing in Linux 2.1.8 (2010).
  28. 28.
    Levon, J.: Oprofile—a System Profiler for Linux (2009).
  29. 29.
    Kristensen L.M., Christensen S., Jensen K.: The Practitioner’s Guide to Coloured Petri Nets. Int. J. Softw. Tools Technol. Transf. 2, 98–132 (1998)CrossRefzbMATHGoogle Scholar
  30. 30.
    Jensen K.: Coloured Petri Nets (2nd ed.): Basic Concepts, Analysis Methods and Practical Use: Volume 1. Springer-Verlag, London, UK (1996)CrossRefGoogle Scholar
  31. 31.
    Lu, B., et al.: A Case Study on Grid Performance Modeling. In: The 18th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2006), Dallas, TX, USA (2006)Google Scholar
  32. 32.
    Prabhakaran, V., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Analysis and Evolution of Journaling File Systems. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, Anaheim, CA, p. 8 (2005)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.University of ArkansasFayettevilleUSA
  2. 2.Clemson UniversityClemsonUSA

Personalised recommendations