Oncologie

, Volume 17, Issue 7–8, pp 277–298 | Cite as

Congrès de l’association américaine de recherche contre le cancer — AACR 2015

Compte Rendu / Report
  • 109 Downloads

Résumé

Dans ce numéro spécial de la revue Oncologie, l’Association d’enseignement et de recherche des internes d’oncologie (AERIO), constamment engagée à améliorer l’éducation et la formation des futurs chercheurs et oncologues, résume les principaux points, de par leur pertinence, discutés au congrès de l’Association américaine pour la recherche sur le cancer (AACR). Notre objectif ici est de présenter de manière concise des exposés qui méritent une attention toute particulière. Cette année, l’AACR s’est notamment concentré sur comment transposer et apporter les découvertes scientifiques aux patients. Le congrès qui a duré cinq jours a proposé un programme multidisciplinaire couvrant tous les aspects de la recherche sur le cancer depuis ses bases fondamentales jusqu’à ses applications translationnelles et cliniques. Ce congrès en outre met en avant les dernières innovations en termes de traitements personnalisés développés grâce à la caractérisation génétique des tumeurs. De plus, grâce à notre compréhension accrue des bases moléculaires du cancer, de nombreuses thérapies ciblées nouvelles ont émergé. Ainsi, notre compréhension sur la façon dont les tumeurs échappent aux attaques du système immunitaire a conduit au développement de nouvelles thérapies. Compte tenu de l’importance accrue de l’immunothérapie dans le traitement du cancer, nous présentons aussi ici les dernières avancées dans ce domaine. Enfin, d’autres approches, telles que la prévention et le dépistage précoce du cancer, ont aussi été citées au congrès de l’AACR comme des facteurs essentiels dans la réduction de la mortalité liée au cancer.

Mots clés

AACR Cancer Médicine personnalisée Thérapie ciblée Hétérogénéité Évolution Immunothérapie Prévention 

American Association for Cancer Research — AACR congress, 2015

Abstract

In this special issue of Oncologie, the French association AERIO (Association d’enseignement et de recherche des internes d’oncologie), constantly committed to improve education and training of early researchers and investigators, summarizes the most relevant topics that were presented at the American Association for Cancer Research (AACR) meeting. Our purpose here is to give the readers a concise report of the presentations that warrant particular attention. This year, the AACR meeting focused on how to bring research discoveries to the patients. It was a five-day multidisciplinary program covering all aspects of cancer science from basic to translational as well as to clinical research. The meeting highlighted the latest and the most exciting findings, including new personalized medicines developed, thanks to the genetic characterization of the tumors. As a result of the great improvement of our knowledge on the molecular basis of cancer, many new targeted therapies have emerged recently. Our understanding on how tumors evade the immune system attack is a good example of this approach leading to the design of novel therapies. Given the increasing importance of cancer immunotherapy, we discuss herein the most recent achievements accomplished in this field. Finally, approaches involving both cancer prevention and early screenings were also cited at the AACR meeting as essential factors in the reduction of the disease mortality.

Keywords

AACR Cancer Personalized medicine Targeted therapy Heterogeneity Evolution Immunotherapy Prevention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12: 9–22. doi: 10.1016/j.ccr.2007.05.008 PubMedGoogle Scholar
  2. 2.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18: 1926–45. doi: 10.1101/gad.1212704 PubMedGoogle Scholar
  3. 3.
    Sarbassov DD, Ali SM, Kim DH, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol CB 14: 1296–302. doi: 10.1016/j.cub.2004.06.054 PubMedGoogle Scholar
  4. 4.
    Kim DH, Sarbassov DD, Ali SM, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–75PubMedGoogle Scholar
  5. 5.
    Delgoffe GM, Pollizzi KN, Waickman AT, et al. (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12: 295–303. doi: 10.1038/ni.2005 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Hamilton KS, Phong B, Corey C, et al. (2014) T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal 7: 55. doi: 10.1126/scisignal.2005169 Google Scholar
  7. 7.
    Narayan P, Holt B, Tosti R, Kane LP (2006) Carma1 is required for Akt-mediated NF-kappaB activation in T cells. Mol Cell Biol 26: 2327–36. doi: 10.1128/MCB.26.6.2327-2336.2006 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Nakaya M, Xiao Y, Zhou X, et al. (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40: 692–705. doi: 10.1016/j.immuni.2014.04.007 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Nicklin P, Bergman P, Zhang B, et al. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521–34. doi: 10.1016/j.cell.2008.11.044 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Poffenberger MC, Jones RG (2014) Amino acids fuel T cellmediated inflammation. Immunity 40: 635–7. doi: 10.1016/j.immuni.2014.04.017 PubMedGoogle Scholar
  11. 11.
    Bensinger SJ, Bradley MN, Joseph SB, et al. (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134: 97–111. doi: 10.1016/j.cell.2008.04.052 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454: 470–7. doi: 10.1038/nature07202 PubMedGoogle Scholar
  13. 13.
    Kidani Y, Elsaesser H, Hock MB, et al. (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14: 489–99. doi: 10.1038/ni.2570 PubMedCentralPubMedGoogle Scholar
  14. 14.
    De Vries IJM, Lesterhuis WJ, Barentsz JO, et al. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23: 1407–13. doi: 10.1038/nbt1154 PubMedGoogle Scholar
  15. 15.
    Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23: 983–7. doi: 10.1038/nbt1121 PubMedGoogle Scholar
  16. 16.
    Aarntzen EHJG, Srinivas M, Radu CG, et al. (2013) In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cell Mol Life Sci CMLS 70: 2237–2257. doi: 10.1007/s00018-012-1159-2 PubMedGoogle Scholar
  17. 17.
    Aarntzen EHJG, Srinivas M, Punt CJA, et al. (2012) Insight into the dynamics, localization and magnitude of antigen-specific immune responses by [(18)F]FLT PET imaging. Oncoimmunology 1: 744–5. doi: 10.4161/onci.19533 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72: 1696–701. doi: 10.1002/mrm.25454 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Aarntzen EHJG, Srinivas M, Walczak P, et al. (2012) In vivo tracking techniques for cellular regeneration, replacement, and redirection. J Nucl Med Off Publ Soc Nucl Med 53: 1825–8. doi: 10.2967/jnumed.112.106146 Google Scholar
  20. 20.
    Aarntzen EHJG, Srinivas M, DeWilt JHW, et al. (2011) Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3’-fluoro-3’-deoxy-thymidine ([18F]FLT) PET imaging. Proc Natl Acad Sci USA 108: 18396–19. doi: 10.1073/pnas.1113045108 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Srinivas M, Turner MS, Janjic JM, et al. (2009) In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med 62: 747–53. doi: 10.1002/mrm.22063 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39: 1–10. doi: 10.1016/j.immuni.2013.07.012 PubMedGoogle Scholar
  23. 23.
    Dudley ME, Gross CA, Somerville RPT, et al. (2013) Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol Off J Am Soc Clin Oncol 31: 2152–9. doi: 10.1200/JCO.2012.46.6441 Google Scholar
  24. 24.
    Hinrichs CS, Rosenberg SA (2014) Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 257: 56–71. doi: 10.1111/imr.12132 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Robert C, Long GV, Brady B, et al. (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372: 320–30. doi: 10.1056/NEJMoa1412082 PubMedGoogle Scholar
  26. 26.
    Ansell SM, Lesokhin AM, Borrello I, et al. (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372: 311–9. doi: 10.1056/NEJMoa1411087 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Brahmer J, Reckamp KL, Baas P, et al. (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–35. doi: 10.1056/NEJMoa1504627 PubMedGoogle Scholar
  28. 28.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348: 69–74. doi: 10.1126/science.aaa4971 PubMedGoogle Scholar
  29. 29.
    Van Rooij N, van Buuren MM, Philips D, et al. (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol Off J Am Soc Clin Oncol 31: 439–42. doi: 10.1200/JCO.2012.47.7521 Google Scholar
  30. 30.
    Alexandrov LB, Nik-Zainal S, Wedge DC, et al. (2013) Signatures of mutational processes in human cancer. Nature 500: 415–21. doi: 10.1038/nature12477 PubMedCentralPubMedGoogle Scholar
  31. 31.
    De Bruin EC, McGranahan N, Mitter R, et al. (2014) Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346: 251–6. doi: 10.1126/science.1253462 PubMedGoogle Scholar
  32. 32.
    Burns MB, Temiz NA, Harris RS (2013) Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 45: 977–83. doi: 10.1038/ng.2701 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Hadrup SR, Bakker AH, Shu CJ, et al. (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6: 520–6. doi: 10.1038/nmeth.1345 PubMedGoogle Scholar
  34. 34.
    Toebes M, Coccoris M, Bins A, et al. (2006) Design and use of conditional MHC class I ligands. Nat Med 12: 246–51. doi: 10.1038/nm1360 PubMedGoogle Scholar
  35. 35.
    Kroemer G, Zitvogel L (2012) Can the exome and the immunome converge on the design of efficient cancer vaccines? Oncoimmunology 1: 579–80. doi: 10.4161/onci.20730 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Kvistborg P, Shu CJ, Heemskerk B, et al. (2012) TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients. Oncoimmunology 1: 409–18PubMedCentralPubMedGoogle Scholar
  37. 37.
    Castle JC, Kreiter S, Diekmann J, et al. (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72: 1081–91. doi: 10.1158/0008-5472.CAN-11-3722PubMedGoogle Scholar
  38. 38.
    Matsushita H, Vesely MD, Koboldt DC, et al. (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482: 400–4. doi: 10.1038/nature10755 PubMedGoogle Scholar
  39. 39.
    Rooney MS, Shukla SA, Wu CJ, et al. (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160: 48–61. doi: 10.1016/j.cell.2014.12.033 PubMedGoogle Scholar
  40. 40.
    Galon J, Costes A, Sanchez-Cabo F, et al. (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–4. doi: 10.1126/science.1129139 PubMedGoogle Scholar
  41. 41.
    Hwang WT, Adams SF, Tahirovic E, et al. (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124: 192–8. doi: 10.1016/j.ygyno.2011.09.039 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Remark R, Becker C, Gomez JE, et al. (2015) The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am J Respir Crit Care Med 191: 377–90. doi: 10.1164/rccm.201409-1671PP PubMedGoogle Scholar
  43. 43.
    Tumeh PC, Harview CL, Yearley JH, et al. (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515: 568–71. doi: 10.1038/nature13954 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Galon J, Mlecnik B, Bindea G, et al. (2014) Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol 232: 199–209. doi: 10.1002/path.4287 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Garon EB, Rizvi NA, Hui R, et al. (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372: 2018–28. doi: 10.1056/NEJMoa1501824 PubMedGoogle Scholar
  46. 46.
    Powles T, Eder JP, Fine GD, et al. (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515: 558–62. doi: 10.1038/nature13904 PubMedGoogle Scholar
  47. 47.
    Kantarjian HM, Hochhaus A, Saglio G, et al. (2011) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12: 841–51PubMedGoogle Scholar
  48. 48.
    Bhang HEC, Ruddy DA, Krishnamurthy-Radhakrishna V, et al. (2015) Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med 21: 440–8PubMedGoogle Scholar
  49. 49.
    Corcoran RB, Ebi H, Turke AB, et al. (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2: 227–35PubMedCentralPubMedGoogle Scholar
  50. 50.
    Ahronian LG, Sennott EM, Van Allen EM, et al. (2015) Clinical acquired resistance to RAF inhibitor combinations in BRAFmutant colorectal cancer through MAPK pathway alterations. Cancer Discov 5: 358–67PubMedGoogle Scholar
  51. 51.
    Kurokawa H, Lenferink AE, Simpson JF, et al. (2000) Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60: 5887–94PubMedGoogle Scholar
  52. 52.
    Miller TW, Hennessy BT, González-Angulo AM, et al. (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 120: 2406–13PubMedCentralPubMedGoogle Scholar
  53. 53.
    Miller TW, Balko JM, Fox EM, et al. (2011) ERa-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov 1: 338–51PubMedCentralPubMedGoogle Scholar
  54. 54.
    Jeselsohn R, Yelensky R, Buchwalter G, et al. (2014) Emergence of constitutively active estrogen receptor-a mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 20: 1757–67Google Scholar
  55. 55.
    Fox EM, Kuba MG, Miller TW, et al. (2013) Autocrine IGFI/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Breast Cancer Res BCR 15: 55Google Scholar
  56. 56.
    Allen EMV, Wagle N, Sucker A, et al. (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4: 94–109PubMedCentralPubMedGoogle Scholar
  57. 57.
    Konieczkowski DJ, Johannessen CM, Abudayyeh O, et al. (2014) A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov 4: 816–27PubMedCentralPubMedGoogle Scholar
  58. 58.
    Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21: 1258–66PubMedGoogle Scholar
  59. 59.
    Juric D, Castel P, Griffith M, et al. (2015) Convergent loss of PTEN leads to clinical resistance to a PI(3)Ka inhibitor. Nature 518: 240–4PubMedCentralPubMedGoogle Scholar
  60. 60.
    Katayama R, Lovly CM, Shaw AT (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 21: 2227–35PubMedGoogle Scholar
  61. 61.
    Shaw AT, Kim DW, Mehra R, et al. (2014) Ceritinib in ALKrearranged non-small-cell lung cancer. N Engl J Med 370: 1189–97PubMedCentralPubMedGoogle Scholar
  62. 62.
    Murai J, Huang SN, Das BB, et al. (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72: 5588–99PubMedCentralPubMedGoogle Scholar
  63. 63.
    Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19: 1381–8PubMedGoogle Scholar
  64. 64.
    Pettitt SJ, Rehman FL, Bajrami I, et al. (2013) A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PloS One 8: 61520Google Scholar
  65. 65.
    Verhaak RG, Hoadley KA, Purdom E, et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 17: 98–110PubMedCentralPubMedGoogle Scholar
  66. 66.
    Debette S, Visvikis-Siest S, Chen MH, et al. (2011) Identification of cis- and trans-acting genetic variants explaining up to half the variation in circulating vascular endothelial growth factor levels. Circ Res 19: 554–563Google Scholar
  67. 67.
    Rogers MS, Rohan RM, Birsner AE, et al. (2003) Genetic loci that control vascular endothelial growth factor-induced angiogenesis. FASEB J 17: 2112–4PubMedGoogle Scholar
  68. 68.
    Lambrechts D, Claes B, Delmar P, et al. (2012) VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomized trials. Lancet Oncol 13: 724–733PubMedGoogle Scholar
  69. 69.
    Beuselinck B, Karadimou A, Lambrechts D, et al. (2013) Singlenucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br J Cancer 108: 887–900PubMedCentralPubMedGoogle Scholar
  70. 70.
    De Haas S, Delmar P, Bansal AT, et al. (2014) Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy. Angiogenesis 17: 909–20PubMedGoogle Scholar
  71. 71.
    Buffa FM, Harris AL, West CM, et al. (2010) Large metaanalysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102: 428–35PubMedCentralPubMedGoogle Scholar
  72. 72.
    Mazzone M, Dettori D, Leite de Oliveira R, et al. (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136: 839–51PubMedCentralPubMedGoogle Scholar
  73. 73.
    Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26: 605–22PubMedGoogle Scholar
  74. 74.
    Batchelor TT, Gerstner ER, Emblem KE, et al. (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 10: 19059–64Google Scholar
  75. 75.
    Chauhan VP, Martin JD, Liu H, et al. (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4: 2516PubMedCentralPubMedGoogle Scholar
  76. 76.
    Keizman D, Huang P, Eisenberger MA, et al. (2011) Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. Eur J Cancer 47: 1955–61PubMedCentralPubMedGoogle Scholar
  77. 77.
    Spranger S, Spaapen RM, Zha Y, et al. (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5: 200Google Scholar
  78. 78.
    Wolchok JD, Kluger H, Callahan MK, et al. (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369: 122–33PubMedGoogle Scholar
  79. 79.
    Fuertes MB, Kacha AK, Kline J, et al. (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208: 2005–16PubMedCentralPubMedGoogle Scholar
  80. 80.
    Corrales L, Glickman LH, McWhirter SM, et al. (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11: 1018–30PubMedGoogle Scholar
  81. 81.
    Cha E, Klinger M, Hou Y, et al. (2014) Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med 6: 238–70Google Scholar
  82. 82.
    Tran E, Turcotte S, Gros A, et al. (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344: 641–5PubMedGoogle Scholar
  83. 83.
    Frederick DT, Piris A, Cogdill AP, et al. (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19: 1225–31PubMedCentralPubMedGoogle Scholar
  84. 84.
    Lee DD, Seung HS (1999) Learning the parts of objects by nonnegative matrix factorization. Nature 401: 788–91PubMedGoogle Scholar
  85. 85.
    Shankaran V, Ikeda H, Bruce AT, et al. (2001) IFN-gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107–11PubMedGoogle Scholar
  86. 86.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331: 1565–70PubMedGoogle Scholar
  87. 87.
    Gubin MM, Zhang X, Schuster H, et al. (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515: 577–81PubMedCentralPubMedGoogle Scholar
  88. 88.
    Leder A, Pattengale PK, Kuo A, et al. (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45: 485–95PubMedGoogle Scholar
  89. 89.
    Donehower LA, Harvey M, Slagle BL, et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–21PubMedGoogle Scholar
  90. 90.
    Chin L, Tam A, Pomerantz J, et al. (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468–72PubMedGoogle Scholar
  91. 91.
    Jinek M, Chylinski K, Fonfara I, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–21PubMedGoogle Scholar
  92. 92.
    DeNicola GM, Karreth FA, Humpton TJ, et al. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475: 106–9PubMedCentralPubMedGoogle Scholar
  93. 93.
    Lidgard GP, Domanico MJ, Bruinsma JJ, et al. (2013) Clinical Performance of an Automated Stool DNA Assay for Detection of Colorectal Neoplasia. Clinical Gastroenterology Hepatology 11: 1313–8PubMedGoogle Scholar
  94. 94.
    Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. (2014) Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 370: 1287–97PubMedGoogle Scholar
  95. 95.
    Chan AT, Ogino S, Fuchs CS (2007) Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 356: 2131–42PubMedGoogle Scholar
  96. 96.
    Fink SP, Yamauchi M, Nishihara R, et al. (2014) Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med 6: 233Google Scholar
  97. 97.
    Nan H, Hutter CM, Lin Y, et al. (2015) Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 313: 1133–42PubMedGoogle Scholar
  98. 98.
    Muñoz N, Bosch FX, Castellsagué X, et al. (2004) Against which human papillomavirus types shall we vaccinate and screen? The International Perspective. Int J Cancer 111: 278–85PubMedGoogle Scholar
  99. 99.
    Ronco G, Dillner J, Elfström KM, et al. (2014) Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 383: 524–32PubMedGoogle Scholar
  100. 100.
    Ali H, Donovan B, Wand H, et al. (2013) Genital Warts in Young Australians Five Years into National Human Papillomavirus Vaccination Programme: National Surveillance Data. BMJ 346: 2032Google Scholar
  101. 101.
    Day PM, Kines RC, Thompson CD, et al. (2010) In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 8: 260–70PubMedCentralPubMedGoogle Scholar
  102. 102.
    Kreimer AR, Rodriguez AC, Hildesheim A, et al. (2011) Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J Natl Cancer Inst 103: 1444–51PubMedCentralPubMedGoogle Scholar
  103. 103.
    Vambutas A, DeVoti J, Nouri M, et al. (2005) Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine 23: 5271–80PubMedGoogle Scholar
  104. 104.
    Mittendorf EA, Clifton GT, Holmes JP, et al. (2014) Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in highrisk breast cancer patients. Ann Oncol 25: 1735–42PubMedGoogle Scholar
  105. 105.
    Kimura T, McKolanis JR, Dzubinski LA (2013) MUC1 Vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6: 18–26Google Scholar
  106. 106.
    Nagle CM, Marquart L, Bain CJ, et al. (2013) Impact of weight change and weight cycling on risk of different subtypes of endometrial cancer. Eur J Cancer 49: 2717–26PubMedGoogle Scholar
  107. 107.
    Yang TY, Cairns BJ, Allen N, et al. (2012) Postmenopausal endometrial cancer risk and body size in early life and middle age: Prospective Cohort Study. Br J Cancer 107: 169–75PubMedCentralPubMedGoogle Scholar
  108. 108.
    Aune D, Navarro-Rosenblatt DA, Chan DS, et al. (2015) Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol Mar 19. pii:mdv142 [Epub ahead of print]Google Scholar
  109. 109.
    Patz EF Jr, Pinsky P, Gatsonis C, et al. (2014) Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med 174: 269–74PubMedCentralPubMedGoogle Scholar
  110. 110.
    Tammemägi MC, Church TR, Hocking WG, et al. (2014) Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLoS Med 11: 1001764Google Scholar
  111. 111.
    Tammemagi MC, Mayo JR, Lam S (2013) Cancer in pulmonary nodules detected on first screening CT. N Engl J Med 369: 2060–1PubMedGoogle Scholar
  112. 112.
    Forsberg LA, Rasi C, Malmqvist N, et al. (2014) Mosaic loss of chromosome y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat Genet 46: 624–8PubMedGoogle Scholar
  113. 113.
    Dumanski JP, Rasi C, Lönn M, et al. (2015) Mutagenesis. Smoking is associated with mosaic loss of chromosome Y. Science 347: 81–3PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  1. 1.Alliance pour la recherche en cancérologie — APREC, service d’oncologie médicale–hôpital Tenonhôpitaux universitaires de l’Est-Parisien (AP–HP)ParisFrance
  2. 2.AERIO & département d’oncologie médicale, Gustave-Roussy Cancer Campus Grand-ParisVillejuif cedexFrance
  3. 3.AERIO & Inserm U935 « Modèles de cellules souches malignes et thérapeutiques »hôpital Paul-Brousse Campus CNRSVillejuifFrance
  4. 4.AERIO & CNRS UMR 8638 COMETE chimie organique médicinale extractive et toxicologie expérimentaleéquipe hétérocycles et peptides : approche ciblée, cancer et angiogenèseParisFrance
  5. 5.AERIO & service d’oncologie médicalehôpital CochinParisFrance
  6. 6.AERIO & département d’innovation thérapeutique et d’essais précocesGustave-Roussy Cancer Campus Grand-ParisVillejuif cedexFrance
  7. 7.Service d’oncologie médicale et de thérapie cellulaire–hôpital Tenon, hôpitaux universitaires de l’Est-parisien (AP–HP), alliance pour la recherche en cancérologie — APREC, institut universitaire de cancérologieuniversité Pierre-et-Marie CurieParisFrance

Personalised recommendations