Skip to main content
Log in

American association for cancer research — AACR congress 2014

Congrès de l’association américaine de recherche contre le cancer — AACR 2014

  • Report / Compte Rendu
  • Published:
Oncologie

Abstract

This year the American association for cancer research meeting was held in San Diego. “Harnessing breakthroughs and targeting cures” was the title of this meeting where the major recent scientific data on cancer research were discussed. This year was undoubtedly the year of immunotherapy and immunology of tumors. With the aim of sharing the data presented at this congress, AERIO (Association d’Enseignement et de Recherche des Internes d’Oncologie) and Oncologie joined to propose a digest of this outstanding congress. Of course, exhaustivity is not an objective of this type of digest which reflects the choices of young researchers and physicians, with the help of the editorial board, among the multiple themes and researches presented and discussed during this meeting. Tumor immunology and immunotherapy data from the congress are reported. Moreover, autophagy, microbiome, liquid biopsy, tumoral heterogeneity, and cancer stem cells data from this congress are reported, as a reflection of the diversity of this meeting and cancer research. From a clinical point of view, new targets and molecules and the new design of clinical trial are also reported.

Résumé

Le congrès de l’association américaine de recherche sur le cancer s’est tenu cette année à San Diego. Les avancées scientifiques et thérapeutiques récentes ont été présentées et discutées et, indéniablement, cette année était l’année de l’immunothérapie et de l’immunologie antitumorale. Bien d’autres aspects des hallmarks du cancer ont également fait l’objet de sessions orales et posters passionnants. C’est avec l’envie de faire partager les avancées présentées lors de cet « ASCO des chercheurs » que l’AERIO s’est associée à la revue Oncologie pour vous proposer un résumé de ce congrès. Bien sûr, ce résumé ne vise pas l’exhaustivité et reflète les choix de chercheurs et médecins juniors, épaulés par le comité rédactionnel, parmi la grande diversité des thématiques de la recherche en oncologie. Les données concernant l’immunologie des tumeurs dans toute sa diversité sont exposées, suivies de celles concernant le rôle de l’autophagie en oncogenèse. Le microbiome et son lien avec le cancer, les biopsies liquides, l’hétérogénéité tumorale et les cellules souches cancéreuses sont abordés tour à tour, comme un reflet de la diversité de ce congrès et de la recherche sur le cancer. Enfin, sur un plan plus clinique, nous nous attardons sur les nouvelles cibles et nouvelles molécules et les nouveaux designs des essais cliniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Vey N, Bourhis J-H, Boissel N, et al. (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120:4317–23. doi: 10.1182/blood-2012-06-437558

    CAS  PubMed  Google Scholar 

  2. Benson DM, Hofmeister CC, Padmanabhan S, et al. (2012) A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120:4324–33

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Andreu P, Johansson M, Affara NI, et al. (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–34

    CAS  PubMed Central  PubMed  Google Scholar 

  4. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–23

    PubMed  Google Scholar 

  5. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    CAS  PubMed  Google Scholar 

  6. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Reviews. Clin Oncol 8:151–60

    CAS  Google Scholar 

  7. Obeid M, Tesniere A, Ghiringhelli F, et al. (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    CAS  PubMed  Google Scholar 

  8. Panaretakis T, Joza N, Modjtahedi N, et al. (2008) The cotranslocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 15:1499–509

    CAS  PubMed  Google Scholar 

  9. Panaretakis T, Kepp O, Brockmeier U, et al. (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. The EMBO Journal 28:578–90

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ghiringhelli F, Apetoh L, Tesniere A, et al. (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL- 1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–8

    CAS  PubMed  Google Scholar 

  11. Michaud M, Martins I, Sukkurwala AQ, et al. (2011) Autophagydependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–7

    CAS  PubMed  Google Scholar 

  12. Apetoh L, Ghiringhelli F, Tesniere A, et al. (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59

    CAS  PubMed  Google Scholar 

  13. Tesniere A, Schlemmer F, Boige V, et al. (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–91

    CAS  PubMed  Google Scholar 

  14. Porter DL, Levine BL, Kalos M, et al. (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–33

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Aranda F, Vacchelli E, Eggermont A, et al. (2014) Trial watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 3: e27297

    Google Scholar 

  16. Galluzzi L, Senovilla L, Vacchelli E, et al. (2012) Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 1:1111–34

    PubMed Central  PubMed  Google Scholar 

  17. Vacchelli E, Eggermont A, Galon J, et al. (2013) Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2: e22789

    Google Scholar 

  18. Vacchelli E, Aranda F, Eggermont A, et al. (2014) Trial watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 3: e27048.

    Google Scholar 

  19. Hamid O, Robert C, Daud A, et al. (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–44

    CAS  PubMed  Google Scholar 

  20. Wolchok JD, Kluger H, Callahan MK, et al. (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–33

    CAS  PubMed  Google Scholar 

  21. Lipson EJ, Sharfman WH, Drake CG, et al. (2013) Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res 19:462–8

    CAS  PubMed Central  PubMed  Google Scholar 

  22. O’Sullivan Coyne G, Madan RA, Gulley JL (2014) Nivolumab: Promising survival signal coupled with limited toxicity raises expectations. J Clin Oncol 32:986–8

    PubMed  Google Scholar 

  23. Topalian SL, Sznol M, McDermott DF, et al. (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol: Official Journal of the American Society of Clinical Oncology 32:1020–30

    CAS  Google Scholar 

  24. McArthur GA, Ribas A (2013) Targeting oncogenic drivers and the immune system in melanoma. J Clin Oncol 31:499–506

    CAS  PubMed  Google Scholar 

  25. Boni A, Cogdill AP, Dang P, et al. (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70:5213–9

    CAS  PubMed  Google Scholar 

  26. Comin-Anduix B, Chodon T, Sazegar H, et al. (2010) The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin Cancer Res 16:6040–8

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Koya RC, Mok S, Otte N, et al. (2012) BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res 72:3928–37

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu C, Peng W, Xu C, et al. (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19:393–403

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ribas A, Hodi FS, Callahan M, et al. (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 368:1365–6

    CAS  PubMed  Google Scholar 

  30. Jan M, Snyder TM, Corces-Zimmerman MR, et al. (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Science translational medicine 4:149ra118. doi: 4/149/149ra118 [pii] 10.1126/scitranslmed.3004315

    PubMed Central  PubMed  Google Scholar 

  31. Willingham SB, Volkmer JP, Gentles AJ, et al. (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America 109:6662–7. doi: 10.1073/pnas.1121623109

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33:464–78

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hunder NN, Wallen H, Cao J, et al. (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NYESO- 1. N Engl J Med 358:2698–703

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Besser MJ, Shoham T, Harari-Steinberg O, et al. (2013) Development of allogeneic NK cell adoptive transfer therapy in metastatic melanoma patients: In vitro preclinical optimization studies. PLoS One 8: e57922

    Google Scholar 

  35. Ruggeri L, Capanni M, Urbani E, et al. (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–100

    CAS  PubMed  Google Scholar 

  36. Iliopoulou EG, Kountourakis P, Karamouzis MV, et al. (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59:1781–9

    PubMed  Google Scholar 

  37. Lister J, Rybka WB, Donnenberg AD, et al. (1995) Autologous peripheral blood stem cell transplantation and adoptive immunotherapy with activated natural killer cells in the immediate post-transplant period. Clin Cancer Res 1:607–14

    CAS  PubMed  Google Scholar 

  38. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17:6287–97

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Li Q, Lao X, Pan Q, et al. (2011) Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 17:4987–95

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Senovilla L, Vacchelli E, Galon J, et al. (2012) Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 1:1323–43

    PubMed Central  PubMed  Google Scholar 

  41. Bouquie R, Bonnin A, Bernardeau K, et al. (2009) A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes. Cancer Immunol Immunother 58:553–66

    CAS  PubMed  Google Scholar 

  42. Rosenberg SA, Yang JC, Sherry RM, et al. (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–7

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Dudley ME, Wunderlich JR, Robbins PF, et al. (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–4

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Dudley ME, Yang JC, Sherry R, et al. (2008) Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–9

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Robbins PF, Lu YC, El-Gamil M, et al. (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–52

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Cheever MA, Higano CS (2010) PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520–6

    Google Scholar 

  47. Higano CS, Small EJ, Schellhammer P, et al. (2010) Sipuleucel- T. Nat Rev Drug Discov 9:513–4

    CAS  PubMed  Google Scholar 

  48. Kantoff PW, Higano CS, Shore ND, et al. (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–22

    CAS  PubMed  Google Scholar 

  49. Mizushima N, Komatsu M (2011) Autophagy: Renovation of cells and tissues. Cell 147:728–41

    CAS  PubMed  Google Scholar 

  50. Kroemer G, White E (2010) Autophagy for the avoidance of degenerative, inflammatory, infectious, and neoplastic disease. Curr Opin Cell Biol 22:121–3

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–93

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Fabrizio P, Hoon S, Shamalnasab M, et al. (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6: e1001024

    Google Scholar 

  53. Marino G, Madeo F, Kroemer G (2011) Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol 23:198–206

    CAS  PubMed  Google Scholar 

  54. Lopez-Otin C, Blasco MA, Partridge L, et al. (2013) The hallmarks of aging. Cell 153:1194–217

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–95

    CAS  PubMed  Google Scholar 

  56. Mathew R, Kongara S, Beaudoin B, et al. (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes & Development 21:1367–81

    CAS  Google Scholar 

  57. White E (2007) Entosis: it’s a cell-eat-cell world. Cell 131:840–2

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Amaravadi RK, Yu D, Lum JJ, et al. (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–36

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    PubMed  Google Scholar 

  60. Brus C, Saif MW (2010) Second line therapy for advanced pancreatic adenocarcinoma: Where are we and where are we going? Highlights from the “2010 ASCO Annual Meeting”. Chicago, IL, USA. June 4-8, 2010. JOP: J Pancreas 11:321–3

    Google Scholar 

  61. Ben-Josef E, Lawrence TS (2008) Chemoradiotherapy for unresectable pancreatic cancer. Int J Clin Onco 13:121–6

    Google Scholar 

  62. Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363:1049–57

    CAS  PubMed  Google Scholar 

  63. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes & development 25:1999–2010. doi: 10.1101/gad.17558811

    CAS  Google Scholar 

  64. Singh M, Lima A, Molina R, et al. (2010) Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol 28:585–93

    CAS  PubMed  Google Scholar 

  65. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5:5–23

    CAS  PubMed  Google Scholar 

  66. Maycotte P, Gearheart CM, Barnard R, et al. (2014) STAT3- mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74:2579–2590

    CAS  PubMed  Google Scholar 

  67. Guo JY, Karsli-Uzunbas G, Mathew R, et al. (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes & Development 27:1447–61

    CAS  Google Scholar 

  68. Strohecker AM, Guo JY, Karsli-Uzunbas G, et al. (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3:1272–85

    CAS  PubMed  Google Scholar 

  69. Turnbaugh PJ, Ley RE, Hamady M, et al. (2007) The human microbiome project. Nature 449:804–10

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Au: Should the following references be included along with the above set of references.]]Ahn J, Sinha R, Pei Z, et al. (2013) Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 105:1907–11

    CAS  PubMed  Google Scholar 

  71. Sobhani I, Tap J, Roudot-Thoraval F, et al. (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PloS One 6: e16393

    Google Scholar 

  72. Zackular JP, Baxter NT, Iverson KD, et al. (2013) The gut microbiome modulates colon tumorigenesis. mBio 4: e00692–00613

    Google Scholar 

  73. Castellarin M, Warren RL, Freeman JD, et al. (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kostic AD, Gevers D, Pedamallu CS, et al. (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–8

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Rubinstein MR, Wang X, Liu W, et al. (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206

    CAS  PubMed  Google Scholar 

  76. Bik EM, Eckburg PB, Gill SR, et al. (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proce Natl Acad Sci USA 103:732–7

    CAS  Google Scholar 

  77. Sheh A, Fox JG (2013) The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut microbes 4:505–31

    PubMed  Google Scholar 

  78. Lofgren JL, Whary MT, Ge Z, et al. (2011) Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140:210–20

    PubMed Central  PubMed  Google Scholar 

  79. Whary MT, Sundina N, Bravo LE, et al. (2005) Intestinal helminthiasis in Colombian children promotes a Th2 response to Helicobacter pylori: Possible implications for gastric carcinogenesis. Cancer epidemiology, biomarkers & prevention: A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 14:1464–9

    CAS  Google Scholar 

  80. Li F, Hullar MA, Beresford SA, Lampe JW (2011) Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr 106:408–16

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Medicine 366:883–92

    CAS  Google Scholar 

  82. Jensen JD, Knoop A, Laenkholm AV, et al. (2012) PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. Ann Oncol: Official Journal of the European Society for Medical Oncology/ESMO 23:2034–42

    CAS  Google Scholar 

  83. Diaz LA, Bardelli A (2014) Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol: Official Journal of the American Society of Clinical Oncology 32:579–86

    Google Scholar 

  84. Krebs MG, Metcalf RL, Carter L, et al. (2014) Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 11:129–44

    CAS  PubMed  Google Scholar 

  85. Leary RJ, Sausen M, Kinde I, et al. (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 4: 162ra154

    PubMed Central  PubMed  Google Scholar 

  86. Bidard FC, Peeters DJ, Fehm T, et al. (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15:406–14

    PubMed  Google Scholar 

  87. Cristofanilli M, Budd GT, Ellis MJ, et al. (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–91

    CAS  PubMed  Google Scholar 

  88. Bidard FC, Fehm T, Ignatiadis M, et al. (2013) Clinical application of circulating tumor cells in breast cancer: Overview of the current interventional trials. Cancer metastasis Rev 32:179–88

    PubMed Central  PubMed  Google Scholar 

  89. Cortazar P, Zhang L, Untch M, et al. (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet [ahead of print] doi: 10.1016/S0140-6736(13)62422-8

    Google Scholar 

  90. Ignatiadis M, Xenidis N, Perraki M, et al. (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in earlystage breast cancer. J Clin Oncol 25:5194–202

    PubMed  Google Scholar 

  91. Lucci A, Hall CS, Lodhi AK, et al. (2012) Circulating tumour cells in non-metastatic breast cancer: A prospective study. Lancet Oncol 13:688–95

    PubMed  Google Scholar 

  92. O’Hara SM, Moreno JG, Zweitzig DR, et al. (2004) Multigene reverse transcription-PCR profiling of circulating tumor cells in hormone-refractory prostate cancer. Clin Chem 50:826–35

    PubMed  Google Scholar 

  93. Danila DC, Morris MJ, de Bono JS, et al. (2010) Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J Clin Oncol 28:1496–501

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Reid AH, Attard G, Danila DC, et al. (2010) Significant and sustained antitumor activity in post-docetaxel, castrationresistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J Clin Oncol 28:1489–95

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Scher HI, Beer TM, Higano CS, et al. (2010) Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 375:1437–46

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Powell AA, Talasaz AH, Zhang H, et al. (2012) Single cell profiling of circulating tumor cells: Transcriptional heterogeneity and diversity from breast cancer cell lines. PloS One 7: e33788

    Google Scholar 

  97. Dawson SJ, Tsui DW, Murtaza M, et al. (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–209

    CAS  PubMed  Google Scholar 

  98. Bettegowda C, Sausen M, Leary RJ, et al. (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6: 224ra224

    Google Scholar 

  99. Campbell PJ (2014) Extent of subclonal diversification in primary and metastatic breast cancer. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA), pp. PL04–02

    Google Scholar 

  100. Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506:322–7

    CAS  PubMed  Google Scholar 

  101. Visvader JE, Rios A, Naiyang F, et al. (2014) The breast epithelial hierarchy and its implications for tumor heterogeneity. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  102. Lim E, Vaillant F, Wu D, et al. (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–13

    CAS  PubMed  Google Scholar 

  103. Eaves CJ (2014) Deducing cellular hierarchies using transplantation and lineage tracing: Concepts and controversy. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  104. Cheung AMS, Nguyen LV, Carles A, et al. (2013) Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood 122:3129–37

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Nguyen LV, Makarem M, Carles A, et al. (2014) Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell 14:253–63

    CAS  PubMed  Google Scholar 

  106. Gilbertson RJ (2014) A cell “ground state” for cancer. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  107. Dick JE (2014) Genetic and non-genetic mechanisms contribute to longterm clonal growth dynamics and therapy resistance. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  108. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–7

    CAS  PubMed  Google Scholar 

  109. Shlush LI, Zandi S, Mitchell A, et al. (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328–33

    CAS  PubMed  Google Scholar 

  110. Wechsler-Reya RJ (2014) Targeting the stem cells that give rise to brain tumors. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  111. Clevers H (2014) Tumor organoids: a new pre-clinical model for drug sensitivity analysis. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  112. Barker N, van Es JH, Kuipers J, et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7

    CAS  PubMed  Google Scholar 

  113. Dekkers JF, Wiegerinck CL, de Jonge HR, et al. (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–45

    CAS  PubMed  Google Scholar 

  114. Sato T, Stange DE, Ferrante M, et al. (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–72

    CAS  PubMed  Google Scholar 

  115. Kuo CJ (2014) Modeling cancer in primary organoid culture. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  116. Ootani A, Li X, Sangiorgi E, et al. (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15:701–6

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Blumenthal G (2014) FDA perspective on innovative trial designs to accelerate availability of highly effective anti-cancer therapies. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  118. Esserman LJ (2014) The I-SPY 2/3 study as an example of an approach that encompasses exploratory as well as registration studies. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  119. Herbst RS (2014) The Lung Master Protocol as an example of abiomarker-driven, multidrug, multi-arm Phase 2/3 registration trial. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  120. LoRusso P (2014) The NCI’s MATCH study as an example of an umbrella protocol for multiple, single-arm phase II trials. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  121. Mansfield E (2014) Regulatory considerations for biomarker and diagnostic test requirements in exploratory and registration studies. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  122. Rubin EH (2014) Overview of novel multi-arm studies. In Novel clinical trial designs in the whole-exome era. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  123. Heinrich MC, Joensuu H, Demetri GD, et al. (2008) Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib-sensitive tyrosine kinases. Clin Cancer Res 14:2717–25

    CAS  PubMed  Google Scholar 

  124. Park JW, Liu MC, Yee D, et al. (2014) Neratinib plus standard neoadjuvant therapy for high-risk breast cancer: Efficacy results from the I-SPY 2 TRIAL. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  125. Sequist L, Cassier P, Philippe A, et al. (2014) Phase I study of BGJ398, a selective pan-FGFR inhibitor in genetically preselected advanced solid tumors. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  126. Patnaik A, Rosen LS, Tolaney SM, et al. (2014) Clinical activity of LY2835219, a novel cell cycle inhibitor selective for CDK4 and CDK6, in patients with metastatic breast cancer. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  127. Finn RS, Crown JP, Lang I, et al. (2014) Final results of a randomized Phase II study of PD 0332991, a cyclin-dependent kinase (CDK)-4/6 inhibitor, in combination with letrozole vs letrozole alone for first-line treatment of ER+/HER2- advanced breast cancer (PALOMA-1; TRIO-18). In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  128. Rothenberg SM, McFadden DG, Palmer EL, et al. (2014) Dabrafenib stimulates radioiodine uptake in BRAF V600E mutant advanced papillary thyroid cancer. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  129. Stein E, Tallman M, Pollyea DA, et al. (2014) Clinical safety and activity in a phase I trial of AG-221, a first in class, potent inhibitor of the IDH2-mutant protein, in patients with IDH2 mutant positive advanced hematologic malignancies. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  130. Koivunen P, Lee S, Duncan CG, et al. (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–8

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Losman J-A, Looper RE, Koivunen P, et al. (2013). (R)- 2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–5

    CAS  PubMed  Google Scholar 

  132. Hnisz D, Abraham BJ, Lee TI, et al. (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–47

    CAS  PubMed  Google Scholar 

  133. Young RA (2014) Transcriptional and epigenetic control of tumor cells. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

  134. Herait PE, Berthon C, Thieblement C, et al. (2014) BET-bromodomain inhibitor OTX015 shows clinically meaningful activity at nontoxic doses: Interim results of an ongoing phase I trial in hematologic malignancies. In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9. AACR, San Diego, CA. Philadelphia (PA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Vaccheli, J. Michels, J. Hadoux or J. P. Lotz.

Additional information

Ce compte rendu a été rédigé par une équipe internationale d’internes, en anglais ou en français selon les parties.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaccheli, E., Michels, J., Hadoux, J. et al. American association for cancer research — AACR congress 2014. Oncologie 16, 341–366 (2014). https://doi.org/10.1007/s10269-014-2414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-014-2414-y

Keywords

Mots clés

Navigation