Skip to main content

Apport de la métabolomique à la détection de biomarqueurs prédictifs

Metabolomics contribution to predictive biomarker discovery

Abstract

Metabolomics deals with the large scale detection, identification and quantification of the metabolites that are present in a biological system. As a result of its downstream output of global cellular networking, the metabolome can reflect the true cellular phenotype and, therefore, offers a new paradigm for biomarker discovery in oncology. Many predictive biomarkers have yet been found for cancer screening, tumour relapse, treatment response, and toxicity of anticancer agents. Yet, few of them have been accepted clinically. This promising approach needs, therefore, besides overcoming some technical limits, to standardize candidates biomarkers development process.

Résumé

La métabolomique est une technique d’analyse à large échelle ayant pour but de détecter, identifier et quantifier le plus grand nombre possible de métabolites présents dans un système biologique. Les métabolites étant situés en aval de lamodification des gènes et des protéines, cette approche offre l’opportunité de mieux rendre compte du phénotype cellulaire et représente un nouveau modèle de découverte de biomarqueurs en oncologie. De nombreux biomarqueurs prédictifs ont été identifiés pour le dépistage de cancers, le suivi de l’évolution de lamaladie, la réponse au traitement et la toxicité des médicaments. Toutefois, peu d’entre eux sont parvenus jusqu’à la validation clinique. Cette approche prometteuse nécessite donc encore, outre de surmonter certaines limites techniques, de standardiser le processus de développement des biomarqueurs candidats.

This is a preview of subscription content, access via your institution.

Références

  1. Alymani NA, Smith MD, Williams DJ, et al. (2010) Predictive biomarkers for personalised anticancer drug use: discovery to clinical implementation. Eur J Cancer 46: 869–879

    Article  PubMed  CAS  Google Scholar 

  2. Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56: 177–185

    Article  PubMed  CAS  Google Scholar 

  3. Backshall A, Sharma R, Clarke SJ, et al. (2011) Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin Cancer Res 17(9): 3019–3028

    Article  PubMed  CAS  Google Scholar 

  4. Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5): 565–577

    Article  PubMed  CAS  Google Scholar 

  5. Bertini I, Cacciatore S, Jensen BV, et al. (2012) Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res 72: 356–364

    Article  PubMed  CAS  Google Scholar 

  6. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69: 89–95

    Article  Google Scholar 

  7. Boudah S, Roux A, Junot C (2012) Advances and challenges in liquid chromatography — mass spectrometry-based metabolomics. Spectra Analyse 284: 52–68

    Google Scholar 

  8. Braas D, Ahler E, Tam B, et al. (2012) Metabolomics strategy reveals subpopulation of liposarcomas sensitive to gemcitabine treatment. Cancer Discov 2: 1109–1117

    Article  PubMed  CAS  Google Scholar 

  9. Carr SA, Anderson L (2008) Protein quantitation through targeted mass spectrometry: the way out of biomarker purgatory? Clin Chem 54(11): 1749–1752

    Article  PubMed  CAS  Google Scholar 

  10. Cheng Y, Xie G, Chen T, et al. (2012) Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res 11(2): 1354–1363

    Article  PubMed  CAS  Google Scholar 

  11. Cho HR, Wen H, Ryu YJ, et al. (2012) An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis. Cancer Res 72: 5179–5187

    Article  PubMed  CAS  Google Scholar 

  12. Claudino WM, Quattrone A, Biganzoli L, et al. (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25: 2840–2846

    Article  PubMed  CAS  Google Scholar 

  13. Davis VW, Bathe OF, Schiller DE, et al. (2011) Metabolomics and surgical oncology: potential role for small molecule biomarkers. J Surg Oncol 103: 451–459

    Article  PubMed  CAS  Google Scholar 

  14. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5): 646–674

    Article  PubMed  CAS  Google Scholar 

  15. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5): 703–707

    Article  PubMed  CAS  Google Scholar 

  16. Huang YC, Lee CM, Chen M, et al. (2007) Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin Cancer Res 13: 1412–1420

    Article  PubMed  CAS  Google Scholar 

  17. Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18: 5572–5584

    Article  PubMed  CAS  Google Scholar 

  18. Nishiumi S, Kobayashi T, Ikeda A, et al. (2012) A novel serum metabolomicsbased diagnostic approach for colorectal cancer. PLoS One 7(7): e40459

    Article  PubMed  CAS  Google Scholar 

  19. Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109(7): 2880–2893

    Article  PubMed  CAS  Google Scholar 

  20. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8): 971–983

    Article  PubMed  CAS  Google Scholar 

  21. Ritchie SA, Ahiahonu PW, Jayasinghe D, et al. (2010) Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med 8: 13

    Article  PubMed  Google Scholar 

  22. Spratlin JL, Serkova NJ et Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15: 431–440

    Article  PubMed  CAS  Google Scholar 

  23. Sreekumar A, Poisson LM, Rajendiran TM, et al. (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457: 910–914

    Article  PubMed  CAS  Google Scholar 

  24. Whiteaker JR, Lin C, Kennedy J, et al. (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29(7): 625–634

    Article  PubMed  CAS  Google Scholar 

  25. Ye G, Zhu B, Yao Z, et al. (2012) Analysis of urinary metabolic signatures of early hepatocellular carcinoma recurrence after surgical removal using gas chromatographymass spectrometry. J Proteome Res 11: 4361–4372

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cochereau.

About this article

Cite this article

Cochereau, D., Junot, C. Apport de la métabolomique à la détection de biomarqueurs prédictifs. Oncologie 15, 461–466 (2013). https://doi.org/10.1007/s10269-013-2323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-013-2323-5

Keywords

  • Metabolomics
  • Predictive biomarker
  • Cancer

Mots clés

  • Métabolomique
  • Biomarqueur prédictif
  • Cancer