Abstract
Metabolomics deals with the large scale detection, identification and quantification of the metabolites that are present in a biological system. As a result of its downstream output of global cellular networking, the metabolome can reflect the true cellular phenotype and, therefore, offers a new paradigm for biomarker discovery in oncology. Many predictive biomarkers have yet been found for cancer screening, tumour relapse, treatment response, and toxicity of anticancer agents. Yet, few of them have been accepted clinically. This promising approach needs, therefore, besides overcoming some technical limits, to standardize candidates biomarkers development process.
Résumé
La métabolomique est une technique d’analyse à large échelle ayant pour but de détecter, identifier et quantifier le plus grand nombre possible de métabolites présents dans un système biologique. Les métabolites étant situés en aval de lamodification des gènes et des protéines, cette approche offre l’opportunité de mieux rendre compte du phénotype cellulaire et représente un nouveau modèle de découverte de biomarqueurs en oncologie. De nombreux biomarqueurs prédictifs ont été identifiés pour le dépistage de cancers, le suivi de l’évolution de lamaladie, la réponse au traitement et la toxicité des médicaments. Toutefois, peu d’entre eux sont parvenus jusqu’à la validation clinique. Cette approche prometteuse nécessite donc encore, outre de surmonter certaines limites techniques, de standardiser le processus de développement des biomarqueurs candidats.
This is a preview of subscription content, access via your institution.
Références
Alymani NA, Smith MD, Williams DJ, et al. (2010) Predictive biomarkers for personalised anticancer drug use: discovery to clinical implementation. Eur J Cancer 46: 869–879
Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56: 177–185
Backshall A, Sharma R, Clarke SJ, et al. (2011) Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin Cancer Res 17(9): 3019–3028
Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5): 565–577
Bertini I, Cacciatore S, Jensen BV, et al. (2012) Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res 72: 356–364
Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69: 89–95
Boudah S, Roux A, Junot C (2012) Advances and challenges in liquid chromatography — mass spectrometry-based metabolomics. Spectra Analyse 284: 52–68
Braas D, Ahler E, Tam B, et al. (2012) Metabolomics strategy reveals subpopulation of liposarcomas sensitive to gemcitabine treatment. Cancer Discov 2: 1109–1117
Carr SA, Anderson L (2008) Protein quantitation through targeted mass spectrometry: the way out of biomarker purgatory? Clin Chem 54(11): 1749–1752
Cheng Y, Xie G, Chen T, et al. (2012) Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res 11(2): 1354–1363
Cho HR, Wen H, Ryu YJ, et al. (2012) An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis. Cancer Res 72: 5179–5187
Claudino WM, Quattrone A, Biganzoli L, et al. (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25: 2840–2846
Davis VW, Bathe OF, Schiller DE, et al. (2011) Metabolomics and surgical oncology: potential role for small molecule biomarkers. J Surg Oncol 103: 451–459
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5): 646–674
Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5): 703–707
Huang YC, Lee CM, Chen M, et al. (2007) Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin Cancer Res 13: 1412–1420
Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18: 5572–5584
Nishiumi S, Kobayashi T, Ikeda A, et al. (2012) A novel serum metabolomicsbased diagnostic approach for colorectal cancer. PLoS One 7(7): e40459
Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109(7): 2880–2893
Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8): 971–983
Ritchie SA, Ahiahonu PW, Jayasinghe D, et al. (2010) Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med 8: 13
Spratlin JL, Serkova NJ et Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15: 431–440
Sreekumar A, Poisson LM, Rajendiran TM, et al. (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457: 910–914
Whiteaker JR, Lin C, Kennedy J, et al. (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29(7): 625–634
Ye G, Zhu B, Yao Z, et al. (2012) Analysis of urinary metabolic signatures of early hepatocellular carcinoma recurrence after surgical removal using gas chromatographymass spectrometry. J Proteome Res 11: 4361–4372
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Cochereau, D., Junot, C. Apport de la métabolomique à la détection de biomarqueurs prédictifs. Oncologie 15, 461–466 (2013). https://doi.org/10.1007/s10269-013-2323-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10269-013-2323-5
Keywords
- Metabolomics
- Predictive biomarker
- Cancer
Mots clés
- Métabolomique
- Biomarqueur prédictif
- Cancer