Skip to main content
Log in

Prolifération et signatures ADN de complexité génomique pour la définition du pronostic des carcinomes mammaires

Proliferation and genome complexity-based signature for prognostic determination of invasive breast carcinomas

  • Mise au Point / Update
  • Published:
Oncologie

Abstract

Invasive breast carcinoma’s prognosis is defined using clinico-pathological parameters among which proliferation is essential. Ki67 has strong prognostic and predictive values. Ki67 is expressed during all the cell cycle but G0. The determination of its expression with the MIB1 antibody, on tissue sections, requires well-controlled preanalytical steps for tissue preparation (fixation and paraffinembedding) and an accurate protocol for immunohistochemistry. These technical issues are limiting but largely balanced with immunohistochemistry’s low cost and its wide utilization in pathology laboratories. Ki67 staining’s interpretation follows international guidelines recently published without any recommended cut-off. However, the most commonly used is 20% of stained cells. Genome complexity assessed with DNA arrays provides another level of prognostic information. The higher the number of chromosome breakpoints, the poorer the prognosis. However, until now, this tool remains useful in the context of clinical trials in specialized centers.

Résumé

La définition du pronostic des carcinomes mammaires infiltrants à l’aide des paramètres cliniques et pathologiques classiques s’appuie sur la mesure de la prolifération. L’expression du Ki67 est observée pendant tout le cycle cellulaire hormis la phase G0. Son analyse immunohistochimique sur coupe tissulaire des carcinomes mammaires requiert la maîtrise des conditions de fixation et de préparation des biopsies et pièces opératoires ainsi que des protocoles de marquages. Son interprétation doit suivre les recommandations internationales récemment publiées. Le seuil communément admis pour distinguer les tumeurs proliférant faiblement de celles proliférant fortement est de 20 % de cellules positives. Ces différents aspects représentent les principales limites de son utilisation. Cependant, sa mise en oeuvre aisée dans les laboratoires de pathologie, son faible coût, sa robustesse face aux effets de la fixation tissulaire ainsi que ses pouvoirs pronostique et prédictif forts en font un outil clé de la prise en charge thérapeutique des carcinomes mammaires. Cette prise en charge peut être encore affinée par l’utilisation d’informations moléculaires issues des données des puces analysant les anomalies de nombres et de structures des chromosomes (comme l’hybridation génomique comparative ou les SNP 6.0 Affymetrix ®). En effet, plus le nombre de cassures chromosomiques augmente, moins le pronostic est bon. Mais ces technologies sont l’apanage de centres spécialisés et ne peuvent à l’heure actuelle être utilisées que dans le cadre d’essais thérapeutiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Aleskandarany MA, Rakha EA, Macmillan RD, et al. (2011) MIB1/Ki-67 labelling index can classify grade 2 breast cancer into two clinically distinct subgroups. Breast Cancer Res Treat 127(3): 591–599

    Article  PubMed  CAS  Google Scholar 

  2. Blamey RW, Ellis IO, Pinder SE, et al. (2007) Survival of invasive breast cancer according to the Nottingham Prognostic Index in cases diagnosed in 1990–1999. Eur J Cancer 43(10): 1548–1555

    Article  PubMed  CAS  Google Scholar 

  3. Cheang MC, Chia SK, Voduc D, et al. (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10): 736–750

    Article  PubMed  CAS  Google Scholar 

  4. Chibon F, Lagarde P, Salas S, et al. (2010) Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 16(7): 781–787

    Article  PubMed  CAS  Google Scholar 

  5. Chin K, DeVries S, Fridlyand J, et al. (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6): 529–541

    Article  PubMed  CAS  Google Scholar 

  6. Di Novi C, Minniti D, Barbaro S, et al. (2010) Vacuum-based preservation of surgical specimens: an environmentallysafe step towards a formalin-free hospital. Sci Total Environ 408(16): 3092–3095

    Article  PubMed  Google Scholar 

  7. Dowsett M, Nielsen TO, A’Hern R, et al. (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103(22): 1656–1664

    Article  PubMed  CAS  Google Scholar 

  8. Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31(1): 13–20

    Article  PubMed  CAS  Google Scholar 

  9. Gravier E, Pierron G, Vincent-Salomon A, et al. (2010) A prognostic DNA signature for T1T2 node-negative breast cancer patients. Genes Chromosomes Cancer 49(12): 1125–1134

    Article  PubMed  CAS  Google Scholar 

  10. Hu Z, Fan C, Oh DS, et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96

    Article  PubMed  Google Scholar 

  11. MacGrogan G, Mauriac L, Durand M, et al. (1996) Primary chemotherapy in breast invasive carcinoma: predictive value of the immunohistochemical detection of hormonal receptors, p53, c-erbB-2, MiB1, pS2 and GST pi. Br J Cancer 74(9): 1458–1465

    Article  PubMed  CAS  Google Scholar 

  12. Manie E, Vincent-Salomon A, Lehmann-Che J, et al. (2009) High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Res 69(2): 663–671

    Article  PubMed  CAS  Google Scholar 

  13. Nguyen PL, Taghian AG, Katz MS, et al. (2008) Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol 26(14): 2373–2378

    Article  PubMed  Google Scholar 

  14. Nik-Zainal S, Alexandrov LB, Wedge DC, et al. (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149(5): 979–993

    Article  PubMed  CAS  Google Scholar 

  15. Nik-Zainal S, Van Loo P, Wedge DC, et al. (2012) The life history of 21 breast cancers. Cell 149(5): 994–1007

    Article  PubMed  CAS  Google Scholar 

  16. Paik S, Shak S, Tang G, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27): 2817–2826

    Article  PubMed  CAS  Google Scholar 

  17. Penault-Llorca F, Andre F, Sagan C, et al. (2009) Ki67 expression and docetaxel efficacy in patients with estrogen receptorpositive breast cancer. J Clin Oncol 27(17): 2809–2815

    Article  PubMed  CAS  Google Scholar 

  18. Perou CM, Sorlie T, Eisen MB, et al. (2000) Molecular portraits of human breast tumours. Nature 406(6797): 747–752

    Article  PubMed  CAS  Google Scholar 

  19. Reyal F, Bollet MA, Caly M, et al. (2012) Respective prognostic value of genomic grade and histological proliferation markers in early stage (pN0) breast carcinoma. PLoS One 7(4): e35184

    Article  PubMed  CAS  Google Scholar 

  20. Richardson AL, Wang ZC, De Nicolo A, et al. (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2): 121–132

    Article  PubMed  CAS  Google Scholar 

  21. Russnes HG, Vollan HK, Lingjaerde OC, et al. (2010) Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med 2(38): 38ra47

    Article  PubMed  Google Scholar 

  22. Sorlie T, Perou CM, Tibshirani R, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS 98(19): 10869–10874

    Article  PubMed  CAS  Google Scholar 

  23. Sotiriou C, Pusztai L (2009) Geneexpression signatures in breast cancer. N Engl J Med 360(8): 790–800

    Article  PubMed  CAS  Google Scholar 

  24. Sotiriou C, Wirapati P, Loi S, et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4): 262–272

    Article  PubMed  CAS  Google Scholar 

  25. Stephens PJ, McBride DJ, Lin ML, et al. (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462(7276): 1005–1010

    Article  PubMed  CAS  Google Scholar 

  26. Vincent-Salomon A, Rousseau A, Jouve M, et al. (2004) Proliferation markers predictive of the pathological response and disease outcome of patients with breast carcinomas treated by anthracyclinebased preoperative chemotherapy. Eur J Cancer 40(10): 1502–1508

    Article  PubMed  CAS  Google Scholar 

  27. Yerushalmi R, Woods R, Ravdin PM, et al. (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11(2): 174–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vincent-Salomon.

About this article

Cite this article

Vincent-Salomon, A. Prolifération et signatures ADN de complexité génomique pour la définition du pronostic des carcinomes mammaires. Oncologie 14, 502–505 (2012). https://doi.org/10.1007/s10269-012-2201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-012-2201-6

Keywords

Mots clés

Navigation