Skip to main content
Log in

Nouveaux développements en IRM en oncologie

New developments in oncology MRI

  • Synthèse / Review Article
  • Published:
Oncologie

Abstract

The technological improvements in Magnetic Resonance Imaging (MRI), allow the analysis of biomarkers such as cellular density, microcirculation and metabolism, which characterize tumor developments. This functional imaging of biomarkers improves morphological data and diagnostic performances in oncological MRI. Full body MRI takes an increasing place in patients’ management in oncology.

Résumé

Les avancées technologiques en imagerie par résonance magnétique (IRM) permettent à présent d’analyser certains biomarqueurs (densité cellulaire, microcirculation et métabolisme) caractérisant le développement tumoral. L’imagerie dite ≪ fonctionnelle ≫ de ces différents biomarqueurs tumoraux tend à compléter les données de l’imagerie morphologique classique et à améliorer les performances diagnostiques, prédictives de l’IRM en cancérologie. Enfin, les derniers développements technologiques, permettant l’utilisation conjointe demultiples antennes, permettent d’examiner le corps entier. Ainsi, l’IRM corps entier prend une place croissante dans la prise en charge des patients en oncologie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Ah-See ML, Makris A, Taylor NJ, et al. (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14(20): 6580–9

    Article  CAS  PubMed  Google Scholar 

  2. Beyersdorff D, Taymoorian K, Knosel T, et al. (2005) MRI of prostate cancer at 1.5 and 3.0 T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol 185(5): 1214–2

    Article  PubMed  Google Scholar 

  3. Bolan PJ, DelaBarre L, Baker EH, et al. (2002) Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med 48(2): 215–22

    Article  PubMed  Google Scholar 

  4. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47(3): 601–6

    Article  PubMed  Google Scholar 

  5. Buckley DL, Roberts C, Parker GJ, et al. (2004) Prostate cancer: evaluation of vascular characteristics with dynamic contrastenhanced T1-weighted MR imaging-initial experience. Radiology 233(3): 709–15

    Article  PubMed  Google Scholar 

  6. de Bazelaire C, Alsop DC, George D, et al. (2008) Magnetic resonance imagingmeasured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res 14(17): 5548–54

    Article  PubMed  Google Scholar 

  7. Durie BG (2006) The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 42(11): 1539–43

    Article  PubMed  Google Scholar 

  8. Dzik-Jurasz A, Domenig C, George M, et al. (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360(9329): 307–8

    Article  PubMed  Google Scholar 

  9. Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2): 228–47

    Article  CAS  PubMed  Google Scholar 

  10. Elster A, Burdette J (2001) MR spectroscopy. Questions & answers in magnetic resonance imaging. 2nd ed. Mosby, Saint-Louis, pp 215–34

    Google Scholar 

  11. Gossmann A, Okuhata Y, Shames DM, et al. (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media-preliminary experience. Radiology 213(1): 265–72

    CAS  PubMed  Google Scholar 

  12. Judenhofer MS, Wehrl HF, Newport DF, et al. (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4): 459–65

    Article  CAS  PubMed  Google Scholar 

  13. Kastler B, Vetter D, Patay Z, Germain P (2006) Comprendre l’IRM: manuel d’autoapprentissage. 6e ed. Masson, Paris

    Google Scholar 

  14. Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst 94(16): 1197–203

    CAS  PubMed  Google Scholar 

  15. Kim CK, Park BK, Han JJ, et al. (2007) Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 31(3): 449–54

    Article  PubMed  Google Scholar 

  16. Kozlowski P, Chang SD, Jones EC, et al. (2006) Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis-correlation with biopsy and histopathology. J Magn Reson Imaging 24(1): 108–13

    Article  PubMed  Google Scholar 

  17. Kuhl CK, Traber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I. Technical considerations and clinical applications. Radiology 246(3): 675–96

    Article  PubMed  Google Scholar 

  18. Kurhanewicz J, Vigneron DB, Nelson SJ, et al. (1995) Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology 45(3): 459–66

    Article  CAS  PubMed  Google Scholar 

  19. Le Bihan D, Breton E, Lallemand D, et al. (1988) Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2): 497–505

    PubMed  Google Scholar 

  20. Leroy-Willig A (2007) Les outils de l’IRM fonctionnelle pour l’oncologie. Oncologie 9: 1–7

    Article  Google Scholar 

  21. Li KL, Wilmes LJ, Henry RG, et al. (2005) Heterogeneity in the angiogenic response of a BT474 human breast cancer to a novel vascular endothelial growth factor-receptor tyrosine kinase inhibitor: assessment by voxel analysis of dynamic contrast-enhanced MRI. J Magn Reson Imaging 22(4): 511–9

    Article  CAS  PubMed  Google Scholar 

  22. Low RN, Gurney J (2007) Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging 25(4): 848–58

    Article  PubMed  Google Scholar 

  23. Mazaheri Y, Shukla-Dave A, Hricak H, et al. (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging-correlation with pathologic findings. Radiology 246(2): 480–8

    Article  PubMed  Google Scholar 

  24. Meisamy S, Bolan PJ, Baker EH, et al. (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1) H MR spectroscopy: a pilot study at 4 T. Radiology 233(2): 424–31

    Article  PubMed  Google Scholar 

  25. Moulopoulos LA, Dimopoulos MA, Weber D, et al. (1993) Magnetic resonance imaging in the staging of solitary plasmacytoma of bone. J Clin Oncol 11(7):1311–5

    CAS  PubMed  Google Scholar 

  26. Padhani AR, Liu G, Koh DM, et al. (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2): 102–25

    CAS  PubMed  Google Scholar 

  27. Parikh T, Drew SJ, Lee VS, et al. (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breathhold T2-weighted imaging. Radiology 246(3): 812–22

    Article  PubMed  Google Scholar 

  28. Schlemmer HP, Schafer J, Pfannenberg C, et al. (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40(2): 64–71

    Article  PubMed  Google Scholar 

  29. Stern JM, Merritt ME, Zeltser I, et al. (2009) Phase one pilot study using magnetic resonance spectroscopy to predict the histology of radiofrequency-ablated renal tissue. Eur Urol 55(2): 433–8

    Article  PubMed  Google Scholar 

  30. Takahara T, Imai Y, Yamashita T, et al. (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4): 275–82

    PubMed  Google Scholar 

  31. Turetschek K, Huber S, Floyd E, et al. (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218(2): 562–9

    CAS  PubMed  Google Scholar 

  32. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89(1): 212–6

    Article  CAS  PubMed  Google Scholar 

  33. Yamada I, Aung W, Himeno Y, et al. (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210(3): 617–23

    CAS  PubMed  Google Scholar 

  34. Yankeelov TE, Lepage M, Chakravarthy A, et al. (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25(1): 1–13

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. de Bazelaire.

About this article

Cite this article

de Bazelaire, C., Chapellier, M., Pluvinage, A. et al. Nouveaux développements en IRM en oncologie. Oncologie 12, 187–196 (2010). https://doi.org/10.1007/s10269-010-1867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-010-1867-x

Keywords

Mots clés

Navigation