Skip to main content
Log in

Imagerie fonctionnelle du sein

Functional imaging of the breast

  • Original
  • Published:
Oncologie

Résumé

L’imagerie mammaire connaît depuis quelques années de nouveaux développements. Ces nouvelles méthodes d’imagerie sont principalement orientées sur l’étude fonctionnelle des tumeurs et ont pour objectif d’améliorer la détection et la caractérisation des tumeurs, mais également de fournir de nouveaux critères pronostiques et de guider la thérapeutique des tumeurs mammaires. Une des études fonctionnelles la plus prometteuse que ce soit par ultrasons, par rayons X ou par IRM est l’étude de l’angiogenèse tumorale qui joue un rôle majeur dans le développement des tumeurs et leur potentialité à métastaser. Nous allons présenter dans cet article les principaux développements de l’imagerie fonctionnelle mammaire concernant toutes les méthodes d’imagerie que ce soit les rayons X, l’échographie, l’IRM et la médecine nucléaire. Après un bref rappel technique nous présenterons les premiers résultats cliniques ainsi que les perspectives de chacune de ces techniques.

Abstract

In recent years, breast imaging has benefited from a number of new advances. The resulting new imaging methods mainly focus on the functional examination of tumours and aim to improve tumour detection and characterization, provide new prognosis criteria, and guide the therapeutic management of breast cancer. One of the most promising functional assessments — whether performed through the use of ultrasound, X-rays or MRI — is the analysis of tumour angiogenesis, which plays a major role in tumour development and metastatic potential. In this article, we discuss the major developments in functional imaging of the breast, including imaging methods such as X-rays, ultrasound, MRI and nuclear medicine. After a brief technology overview, we present the early clinical results and prospects of each of the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Remontet L (2003) Cancer incidence and mortality in France over the period 1978–2000. Rev Epidemiol Santé Publique

  2. Jong RA, Yaffe MJ, Skarpathiotakis M, et al. (2003) Contrast-enhanced Digital Mammography: initial clinical experience. Radiology 228: 842–50

    Article  PubMed  Google Scholar 

  3. Dromain C, Balleyguier C, Muller S, et al. (2006) Evaluation of tumor angiogenesis of breast carcinoma using contrast enhanced digital mammography. AJR 5: 528–37

    Article  Google Scholar 

  4. Lewin JM, Isaacs PK, Vance V, et al. (2003) Dual-Energy Contrast-enhanced Digital Subtraction Mammography: Feasibility, Radiology 229: 261–8

    Article  PubMed  Google Scholar 

  5. Niklason LT, Christian BT, Niklason LE, et al. (1997) Digital tomosynthesis in breast imaging. Radiology 205: 399–406

    PubMed  CAS  Google Scholar 

  6. Rafferty EA, Georgian-Smith D, Kopans DB, et al. (2002) Comparison of full-field digital tomosynthesis with two-view conventional film screen mammography in the prediction of lesion malignancy. Radiology, pp 225–268

  7. Madjar H, Prompeler HJ, Sauerbrei W, et al. (1994) Color Doppler flow criteria of breast lesions. Ultrasound Med Biol 20: 849–58

    Article  PubMed  CAS  Google Scholar 

  8. Engels K, Fox SB, Whitehouse RM, et al. (1997) Distinct angiogenic patterns are associated with high-grade in situ ductal carcinomas of the breast. J Pathol 181: 207–12

    Article  PubMed  CAS  Google Scholar 

  9. Del Cura JL, Elizagaray E, Zabala R, et al. (2005) The Use of Unenhanced Doppler Sonography in the Evaluation of Solid Breast Lesions. Am J Roentgenol 184: 1788–94

    Google Scholar 

  10. Jung EM, Jungius KP, Rupp N, et al. (2005) Contrast enhanced harmonic ultrasound for differentiating breast tumors: first results. Clin Hemorheol Microcirc 33: 109–20

    PubMed  Google Scholar 

  11. Moon WK, Im JG, Noh DY, et al. (2000) Non-palpable breast lesions: evaluation with power Doppler US and a microbubble contrast agent-initial experience. Radiology 217: 240–6

    PubMed  CAS  Google Scholar 

  12. Jung EM, Jungius KP, Rupp N, et al. (2005) Contrast enhanced harmonic ultrasound for differentiating breast tumors: first results. Clin Hemorheol Microcirc 33: 109–20

    PubMed  Google Scholar 

  13. Garra BS, Cespedes EI, Ophir J, et al. (1997) Elastography of breast lesions: initial clinical results. Radiology 202:79–86

    PubMed  CAS  Google Scholar 

  14. Locatelli M (2006) L’élastographie avec ultrasons du sein. Imagerie de la Femme 4: 272–5

    Google Scholar 

  15. Itoh A, Ueno E, Tohno E, et al. (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239: 341–50

    Article  PubMed  Google Scholar 

  16. Macura KJ, Ouwerkerk R, Jacobs MA, et al. (2006) Patterns of enhancement on breast MR images: Interpretation and imaging pitfalls. Radiographics 26: 1719–34

    Article  PubMed  Google Scholar 

  17. Sitter B, Lundgren S, Bathen TS, et al. (2006) Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed 19: 30–40

    Article  PubMed  CAS  Google Scholar 

  18. Stanwell P, Gluch L, Clark D, et al. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1HMRS at 1.5T

  19. Bartella L, Morris EA, Dershaw DD, et al. (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239: 686–92

    Article  PubMed  Google Scholar 

  20. Avril N, Rose CA, Schelling M, et al. (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 120: 3495–502

    Google Scholar 

  21. Murthy K, Aznar M, Bergman AM, et al. (2000) Positron emission mammographic instrument: initial results. Radiology 1: 280–5

    Google Scholar 

  22. Oshida M, Uno K, Suzuki M, et al. (1998) Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose. Cancer 11: 2227–34

    Article  Google Scholar 

  23. Inoue T, Yutani K, Taguchi T, et al. (2004) Preoperative evaluation of prognosis in breast cancer patients by [(18)F]2-Deoxy-2-fluoro-D-glucose-positron emission tomography. J Cancer Res Clin Oncol 5: 273–8

    Article  Google Scholar 

  24. Eubank WB, Mankoff D, Bhattacharya M, et al. (2004) Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. Am J Roentgenol 2: 479–86

    Google Scholar 

  25. Yap CS, Seltzer MA, Schiepers C, et al. (2001) Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician’s perspective. J Nucl Med 9: 1334–7

    Google Scholar 

  26. Isasi CR, Moadel RM, Blaufox MD (2005) A meta-analysis of FDG-PET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 90: 105–12

    Article  PubMed  CAS  Google Scholar 

  27. Vranjesevic D, Filmont JE, Meta J, et al. (2002) Whole-body (18)F-FDG PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med 43: 325–9

    PubMed  Google Scholar 

  28. Suarez M, Perez-Castejon MJ, Jimenez A, et al. (2002) Early diagnosis of recurrent breast cancer with FDH-PET in patients with progressive elevation of serum tumor markers. Q J Nucl Med 46: 113–21

    PubMed  CAS  Google Scholar 

  29. Rousseau C, Devillers A, Sagan C, et al. (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F] fluorodeoxyglucose positron emission tomography. J Clin Oncol 24: 5366–72

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dromain.

About this article

Cite this article

Dromain, C., Balleyguier, C., Leboulleux, S. et al. Imagerie fonctionnelle du sein. Oncologie 9, 279–285 (2007). https://doi.org/10.1007/s10269-007-0619-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-007-0619-z

Mots clés

Keywords

Navigation