Mycoscience

, Volume 53, Issue 2, pp 113–121 | Cite as

Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India

  • Surendra K. Gond
  • Ashish Mishra
  • Vijay K. Sharma
  • Satish K. Verma
  • Jitendra Kumar
  • Ravindra N. Kharwar
  • Anuj Kumar
Full Paper

Abstract

Endophytic fungi from Nyctanthes arbor-tristis were isolated and evaluated for their antimicrobial activity. A total of 19 endophytic fungi were isolated from 400 segments of healthy leaf and stem tissues of N. arbor-tristis. Eighteen endophytic fungi were obtained from leaf, while only ten from stem. Alternaria alternata had the highest colonization frequency (15.0%) in leaf, whereas Cladosporium cladosporioides ranked first in stem with a colonization frequency of 12%. The diversity and species richness were found higher in leaf tissues than in stem. The similarity indices between leaf and stem were 0.473 for Jaccard’s and 0.642 for the Sorenson index, respectively. Of 16, 12 (75%) endophytic fungal extracts showed antibacterial activity against either one or more pathogenic bacteria. The endophytic Nigrospora oryzae showed maximum inhibition against Shigella sp. and Pseudomonas aeruginosa. The leaf endophytes Colletotrichum dematium and Chaetomium globosum exhibited a broad range of anibacterial activity and were active against Shigella flexnii, Shigella boydii, Salmonella enteritidis, Salmonella paratyphi, and P. aeruginosa. Nine out of 16 (56.25%) endophytic fungi exhibited antifungal activity to one or more fungal pathogens. Colletotrichum dematium inhibited 55.87% of the radial growth of the phytopathogen Curvularia lunata. The antimicrobial activity of these endophytic microorganisms could be exploited in the biotechnological, medicinal, and agricultural industries.

Keywords

Biocontrol agent Colletotrichum dematium Colonization frequency Fungal endophytes Metabolites 

References

  1. Ainsworth GC, Sparrow FK, Sussman AS (1973) The fungi: an advanced treatise, vol 4A. Academic Press, New YorkGoogle Scholar
  2. Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3CrossRefGoogle Scholar
  3. Bacon CW, White JF (1994) Biotechnology of endophytic fungi of grasses. CRC press, Boca RatonGoogle Scholar
  4. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New YorkGoogle Scholar
  5. Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi, 4th edn. The American Phytopathological Society, St. PaulGoogle Scholar
  6. Bauer AW, Kirby WM, Sherries JC, Turck M (1966) Antibiotics susceptibility testing by the standardized single disc method. Am J Clin Pathol 45:493–496PubMedGoogle Scholar
  7. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26PubMedCrossRefGoogle Scholar
  8. Ellis MB (1976) More dematiaceous hyphomycetes. Commonwealth Mycological Institute, KewGoogle Scholar
  9. Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375CrossRefGoogle Scholar
  10. Gond SK, Verma VC, Mishra A, Kumar A, Kharwar RN (2010) Role of fungal endophytes in plant protection. In: Arya A, PerellóAE (eds) Management of Fungal plant pathogens. CAB International, Wallingford, pp 183–197Google Scholar
  11. Gong LJ, Guo SH (2009) Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr J Biotechnol 8(5):731–736Google Scholar
  12. Hata K, Futai K (1995) Endophytic fungi associated healthy Pine needle infested by Pine needle gall midge Thecodiplosis japonensis. Can J Bot 73:384–390CrossRefGoogle Scholar
  13. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891PubMedCrossRefGoogle Scholar
  14. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2007) Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23:1253–1263CrossRefGoogle Scholar
  15. Kharwar RN, Gond SK, Kumar A, Mishra A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948CrossRefGoogle Scholar
  16. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228PubMedCrossRefGoogle Scholar
  17. Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009a) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238PubMedCrossRefGoogle Scholar
  18. Kharwar RN, Verma VC, Kumar A, Redman RS (2009b) Endophytic fungi: better players of biodiversity, stress tolerance, host protection and antimicrobial production. In: Chauhan AK, Verma A (eds) A text book of molecular biotechnology. I K International Publishing House, New Delhi, pp 1033–1357Google Scholar
  19. Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 95:228–233Google Scholar
  20. Khatune NA, Mosaddik MA, Haque ME (2001) Antibacterial activity and cytotoxicity of Nyctanthes arbor-tristis flowers. Fitoterapia 72(4):412–414PubMedCrossRefGoogle Scholar
  21. Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Div 17:69–90Google Scholar
  22. Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coastal mangrove habitats, India. Czech Mycol 55(2–4):241–251Google Scholar
  23. Osono T, Mori A (2004) Distribution of phyllosphere fungi within the canopy of giant dogwood. Mycoscience 45:161–168Google Scholar
  24. Petrini O (1991) Fungal endophytes of tree leave. In: Andrews JA, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  25. Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production and substrate utilization in endophytic fungi. Nat Toxins 1:185–196PubMedCrossRefGoogle Scholar
  26. Promputtha I, Lumiyong S, Dhansekaran V, Mckenzie EHC, Hyde KD, Jewoon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–589PubMedCrossRefGoogle Scholar
  27. Raper KB, Thom CA (1949) Manual of the penicillia. Elsevier biomedical press, AmsterdamGoogle Scholar
  28. Raviraja NS, Maria GL, Sridhar KR (2006) Antimicrobial evaluation of endophytic fungi inhabiting medicinal plants of the Western Ghats of India. Eng Life Sci 6(5):515–520CrossRefGoogle Scholar
  29. Sasmal D, Das S, Basu SP (2007) Phytoconstituents and therapeutic potential of Nyctanthes arbor tristis Linn. Pharmacogn Rev 1(2):344–349Google Scholar
  30. Schulz B, Christine B, Draeger S, Romert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1002CrossRefGoogle Scholar
  31. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450CrossRefGoogle Scholar
  32. Shu RG, Wang FW, Yang YM, Liu YX, Tan RX (2004) Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, an endophytic fungus in Quercus variabilis. Lipids 39(7):667–673PubMedCrossRefGoogle Scholar
  33. Simpson EH (1951) The interpretation of interaction in contingency tables. J R Stat Soc Ser B 13:238–241Google Scholar
  34. Smith JT, Bremner DA, Datta N (1974) Ampicillin resistance of Shigellasonnei. Antimicrob Agents Chemother 6:418–421PubMedGoogle Scholar
  35. Stierle A, Strobel GA, Stierle D (1993) Taxol and taxen production by Taxomyces andreanae an endophytic fungus of pacific yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  36. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328PubMedCrossRefGoogle Scholar
  37. Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006Google Scholar
  38. Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel GA (2007) Endophytic mycoflora from leaf, bark, and stem of Azadirachta indica A Juss. from Varanasi India. Microb Ecol 54:119–125PubMedCrossRefGoogle Scholar
  39. Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Comm 4(11):1511–1532Google Scholar
  40. Von Arx JA (1978) The genera of fungi sporulating in pure culture. In: Gantner AR, Verlag KG (eds) FL-9490 Vaduz, LiechtensteinGoogle Scholar
  41. Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134CrossRefGoogle Scholar
  42. Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperziaserrata produces Huperzine A. World J Microbiol Biotechnol 27(3):479–487CrossRefGoogle Scholar
  43. Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530PubMedCrossRefGoogle Scholar

Copyright information

© The Mycological Society of Japan and Springer 2011

Authors and Affiliations

  • Surendra K. Gond
    • 1
  • Ashish Mishra
    • 1
  • Vijay K. Sharma
    • 1
  • Satish K. Verma
    • 1
  • Jitendra Kumar
    • 1
  • Ravindra N. Kharwar
    • 1
  • Anuj Kumar
    • 2
  1. 1.Mycopathology and Microbial Technology Laboratory, Department of BotanyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of BotanyBuddha P.G. CollegeKushinagarIndia

Personalised recommendations