Skip to main content
Log in

Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto

Mycoscience

Cite this article

Abstract

Although the genus concept of Phyllosticta s. str. (teleomorph: Guignardia) as defined by van der Aa is widely accepted, the species concept is still controversial because it is often based on the morphology on host plants. In this study, the culture characteristics within Phyllosticta s.str. were examined, and the phylogenetic relationships among Japanese species of Phyllosticta s.str. and its teleomorph Guignardia were analyzed using 18S rDNA sequences. Phyllosticta s. str. formed a monophyletic clade. ITS-28S rDNA sequences extracted from fungal cultures derived from various host plants were divided into two subgroups. The first group included cultures from a wide range of host plants and were mainly derived as endophytes from a symptom-less plant. In the second group, cultures from each host plant genus formed distinct clades; these were often isolated as leaf pathogens from diverse plants. Isolates belonging to the first lineage generally grew faster on oatmeal agar. To classify species of Phyllosticta it is necessary to consider an integrated approach such as molecular phylogeny, host plant, colony growth, symptoms, and morphological characteristics of the conidiomata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Baayen RP, Bonants PJM, Verkley G, Carroll GC, Aa HA van der, de Weerdt M, van Brouwershaven IR, Schutte GC, Maccheroni W Jr, Glienke de Blanco C, Azevedo JL (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477

    Article  PubMed  CAS  Google Scholar 

  • Bissett J (1979) Coelomycetes on Liliales: the genus Phyllosticta. Can J Bot 57:2082–2095

    Article  Google Scholar 

  • Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803

    Article  CAS  Google Scholar 

  • Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304

    Article  Google Scholar 

  • Chupp C (1940) Further notes on double cover-glass mounts. Mycologia 32:269–270

    Article  Google Scholar 

  • Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253

    Article  PubMed  Google Scholar 

  • Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann Mo Bot Gard 79:333–345

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gruyter J de, Boerema GH, van der Aa HA (2002) Contributions towards a monograph of Phoma (Coelomycetes) VI-2. Section Phyllostictoides: outline of its taxa. Persoonia 18:1–54

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hendriks L, Goris A, Neefs J, Van de Peer Y, Hennebert G, de Wachter R (1989) The nucleotide sequence of the small ribosomal subunit RNA of the yeast Candida albicans and the evolutionary position of the fungi among the Eukaryotes. Syst Appl Microbiol 12:223–229

    CAS  Google Scholar 

  • Ito K, Shibukawa K, Kobayashi T (1952) Etiological and pathological studies on the needle blight of Cryptomeria japonica I: morphology and pathogenicity of the fungi inhabiting the blighted needles (in Japanese). Bull Gov For Exp Stn Tokyo 52:79–152

    Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T (1957a) Life cycle of shoot blight fungus, Guignardia cryptomeriae Sawada, of Japanese cedar: Cryptomeria japonica D. Don (in Japanese). J Jpn For Soc 38:16–19

    Google Scholar 

  • Kobayashi T (1957b) Studies on the shoot blight disease of Japanese cedar, Cryptomeria japonica D. Don, caused by Guignardia cryptomeriae Sawada (in Japanese). Bull Gov For Exp Stn Tokyo 96:17–36

    Google Scholar 

  • Kobayashi T (1962) A blight disease of larch caused by Guignardia cryptomeriae Sawada in comparison with the shoot blight caused by Physalospora laricina Sawada (in Japanese). J Jpn For Soc 44:282–286

    Google Scholar 

  • Kobayashi T, Sasaki K (1975) Notes on new or little-known fungi inhabiting woody plant in Japan VII. Trans Mycol Soc Jpn 16: 230–244

    Google Scholar 

  • Luttrell ES (1946) Black rot of muscadine grapes. Phytopathology 36:905–924

    Google Scholar 

  • Luttrell ES (1948) Physiologic specialization in Guignardia bidwellii, cause of black rot of Vitis and Parthenocissus species. Phytopathology 38:716–723

    Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lucking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  Google Scholar 

  • Matsuda S, Takamatsu S (2003) Evolution of host-parasite relationships of Golovinomyces (Ascomycete: Erysiphaceae) inferred from nuclear rDNA sequences. Mol Phylogenet Evol 27:314–327

    Article  PubMed  CAS  Google Scholar 

  • Meyer L, Sanders GM, Jacobs R, Korsten L (2006) A one-day sensitive method to detect and distinguish between the citrus black spot pathogen Guignardia citricarpa and the endophyte Guignardia mangiferae. Plant Dis 90:97–101

    Article  CAS  Google Scholar 

  • Miyashita S (2001) Studies on molecular phylogeny of Guignardia canker disease on Cryptomeria japonica, Chamaecyparis obtusa and other genera (in Japanese). Trans Jpn For Soc Tokyo 115:290

    Google Scholar 

  • Motohashi K, Nishikawa J, Akiba M, Nakashima C (2008) Studies on the Japanese species belonging to the genus Phyllosticta (1). Mycoscience 49:11–18

    Article  Google Scholar 

  • Nakashima C, Kobayashi T (1997) Etiological studies on brown spot disease of Pyracantha. Ann Phytopathol Soc Jpn 63:309–315

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallin gford, pp 225–233

    Google Scholar 

  • Okane I, Nakagiri A, Ito T (2001) Identity of Guignardia sp. inhabiting ericaceous plants. Can J Bot 79:101–109

    Article  Google Scholar 

  • Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44:353–363

    Article  Google Scholar 

  • Pandey AK, Reddy MS, Suryanarayanan TS (2003) ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol Res 107:439–444

    Article  PubMed  CAS  Google Scholar 

  • Peres NA, Harakava R, Carroll GC, Adaskaveg JE, Timmer LW (2007) Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Dis 91:525–531

    Article  CAS  Google Scholar 

  • Reusser FA (1964) Über einige Arten der Gattung Guignardia Viala et Ravaz. Phytopathol Z 51:205–240

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Saccardo PA (1878) Fungi Veneti novi vel critici, series 7. Michelia 1:133–221

    Google Scholar 

  • Saccardo PA (1884) Sylloge fungorum omnium hucusque cognitorum, vol 3. Patavii, Italy (Lithoprinted by Edwars brothers INC, Michigan 1994)

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sawada K (1950) Fungi inhabiting on conifers in the Tohoku district (I). Fungi on Sugi (Cryptomeria japonica D. Don.) (in Japanese). Bull Gov For Exp Stn Tokyo 45:27–53

    Google Scholar 

  • Stewart VB (1916) The leaf blotch disease of horse-chestnut. Phytopathology 6:5–19

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods), 4.0 Beta. Sinauer, Sunderland, MA

    Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  PubMed  CAS  Google Scholar 

  • van der Aa HA (1973) Studies in Phyllosticta. I. Stud Mycol 5:1–110

    Google Scholar 

  • van der Aa HA, Noordeloos ME, de Gruyter J (1990) Species concepts in some larger genera of the Coelomycetes. Stud Mycol 32:3–19

    Google Scholar 

  • van der Aa HA, Vanev S (2002) A revision of the species described in Phyllosticta. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Motohashi.

About this article

Cite this article

Motohashi, K., Inaba, S., Anzai, K. et al. Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto. Mycoscience 50, 291–302 (2009). https://doi.org/10.1007/s10267-009-0487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-009-0487-z

Key words

Navigation