Skip to main content
Log in

Effect of initial periodontal therapy on metallothionein levels in smokers and non-smokers with periodontitis

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effect of non-surgical periodontal therapy (NSPT) on mRNA expression of metallothionein (MT) and its levels in serum, saliva and gingival crevicular fluid (GCF) of smokers (S) and non-smokers (NS) with periodontitis (P).

A total of 100 participants were included: 48 periodontally healthy (PH) subjects (24 S [PH + S] and 24 NS [PH + NS]) and 52 patients with P (27 S [P + S] and 25 NS [P + NS]). Clinical parameters were recorded, and biofluids (serum, saliva and GCF) and gingival tissue samples were obtained at baseline in all groups and 3 months after NSPT in P groups. MT levels in biofluids were determined by ELISA. In gingival tissues, MT-mRNA expression was quantified using real-time PCR. mRNA expression of MT and its levels in biofluids were significantly higher in P + S compared to other groups, and the differences between P + NS and PH + S were non-significant. A significant decrease was observed for MT levels in biofluids, and MT-mRNA expression in periodontitis patients after NSPT. In conclusion, smoking and periodontitis are associated with higher MT expression which decreases after NSPT. MT as an oxidative stress biomarker and its therapeutic role in periodontitis should be investigated in future studies.

Clinical trial registration: The study was prospectively registered at Clinical Trials Registry—India (ctri.nic.in) as CTRI/2018/08/015427 on August 23, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000. 2014;64:57–80.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol 2000. 2020;84(1):45–68.

    Article  PubMed  Google Scholar 

  3. Barbour SE, Nakashima K, Zhang JB, Tangada S, Hahn CL, Schenkein HA, et al. Tobacco and smoking: environmental factors that modify the host response (immune system) and have an impact on periodontal health. Crit Rev Oral Biol Med. 1997;8(4):437–60.

    Article  CAS  PubMed  Google Scholar 

  4. Chang J, Meng H, Lalla E, Lee C. The impact of smoking on non-surgical periodontal therapy: a systematic review and meta-analysis. J Clin Periodontol. 2021;48:61–76.

    Article  Google Scholar 

  5. Thornalley PJ, Vašák M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta. 1985;827:36–44.

    Article  CAS  PubMed  Google Scholar 

  6. Ghoshal K, Jacob ST. Regulation of metallothionein gene expression. Prog Nucleic Acid Res Mol Biol. 2001;66:357–84.

    Article  CAS  PubMed  Google Scholar 

  7. Yadav VS, Mir RA, Bhatia A, Yadav R, Shadang M, Chauhan SS, et al. Metallothionein levels in gingival crevicular fluid, saliva, and serum of smokers and non-smokers with chronic periodontitis. J Periodontol. 2021;92(9):1329–38.

    Article  CAS  PubMed  Google Scholar 

  8. Katsuragi H, Hasegawa A, Saito K. Distribution of metallothionein in cigarette smokers and non-smokers in advanced periodontitis patients. J Periodontol. 1997;68:1005–9.

    Article  CAS  PubMed  Google Scholar 

  9. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Clin Periodontol. 2018;45:S149–61.

    Article  PubMed  Google Scholar 

  10. Silness J, Löe H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand. 1964;22:121–35.

    Article  CAS  PubMed  Google Scholar 

  11. Löe H, Silness J. Periodontal disease in pregnancy I. Prevalence and severity. Acta Odontol Scand. 1963;21:533–51.

    Article  PubMed  Google Scholar 

  12. Mühlemann HR, Son S. Gingival sulcus bleeding—a leading symptom in initial gingivitis. Helv Odontol Acta. 1971;15:107–13.

    PubMed  Google Scholar 

  13. Garg N, Singh R, Dixit J, Jain A, Tewari V. Levels of lipid peroxides and antioxidants in smokers and nonsmokers. J Periodontal Res. 2006;41:405–10.

    Article  CAS  PubMed  Google Scholar 

  14. Dalton T, Palmiter RD, Andrews GK. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res. 1994;22:5016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sato M, Sasaki M, Hojo H. Antioxidative roles of metallothionein and manganese superoxide dismutase induced by tumor necrosis factor-α and interleukin-6. Arch Biochem Biophys. 1995;316:738–44.

    Article  CAS  PubMed  Google Scholar 

  16. Giannopoulou C, Kamma JJ, Mombelli A. Effect of inflammation, smoking and stress on gingival crevicular fluid cytokine level: cytokine profile in health and periodontitis. J Clin Periodontol. 2003;30:145–53.

    Article  CAS  PubMed  Google Scholar 

  17. Dutra TP, Sacramento CM, Nagay BE, Magno MB, Marañón-Vásquez GA, Maia LC, et al. Do smokers have a different gingival crevicular fluid cytokine/chemokine profile than nonsmokers in clinically healthy periodontal sites? A systematic review and meta-analysis. Clin Oral Investig. 2022;26(2):1183–97.

    Article  PubMed  Google Scholar 

  18. Min KS, Terano Y, Onosaka S, Tanaka K. Induction of hepatic metallothionein by nonmetallic compounds associated with acute-phase response in inflammation. Toxicol Appl Pharmacol. 1991;111:152–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kasutani K, Itoh N, Kanekiyo M, Muto N, Tanaka K. Requirement for cooperative interaction of interleukin-6 responsive element type 2 and glucocorticoid responsive element in the synergistic activation of mouse metallothionein-i gene by interleukin-6 and glucocorticoid. Toxicol Appl Pharmacol. 1998;151:143–51.

    Article  CAS  PubMed  Google Scholar 

  20. Hidalgo J, Giralt M, Garvey JS, Armario A. Physiological role of glucocorticoids on rat serum and liver metallothionein in basal and stress conditions. Am J Physiol. 1988;254:E71–8.

    CAS  PubMed  Google Scholar 

  21. Galazyn-Sidorczuk M, Brzóska MM, Moniuszko-Jakoniuk J. Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking. Environ Monit Assess. 2008;137:481–93.

    Article  CAS  PubMed  Google Scholar 

  22. Yaprak E, Yolcubal I, Sinanoğlu A, Doğrul-Demiray A, Guzeldemir-Akcakanat E, Marakoğlu I. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study. J Periodontal Res. 2017;52:83–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mukhopadhyay D, Mitra A, Nandi P, Varghese AC, Murmu N, Chowdhury R, et al. Expression of metallothionein-1 (MT-1) mRNA in the rat testes and liver after cadmium injection. Syst Biol Reprod Med. 2009;55(5–6):188–92.

    Article  CAS  PubMed  Google Scholar 

  24. Zorita I, Bilbao E, Schad A, Cancio I, Soto M, Cajaraville MP. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT–PCR. Toxicol Appl Pharmacol. 2007;220:186–96.

    Article  CAS  PubMed  Google Scholar 

  25. Milnerowicz H, Bizoń A. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol. 2010;57:99–104.

    Article  CAS  PubMed  Google Scholar 

  26. Bizoń A, Milnerowicz H. Participation of metallothionein and superoxide dismutase in the blood of smoking smelters. Int J Occup Med Environ Health. 2014;27:326–34.

    Article  PubMed  Google Scholar 

  27. Tamaki N, Tomofuji T, Ekuni D, Yamanaka R, Yamamoto T, Morita M. Short-term effects of non-surgical periodontal treatment on plasma level of reactive oxygen metabolites in patients with chronic periodontitis. J Periodontol. 2009;80:901–6.

    Article  CAS  PubMed  Google Scholar 

  28. Shimada Y, Komatsu Y, Ikezawa-Suzuki I, Tai H, Sugita N, Yoshie H. The effect of periodontal treatment on serum leptin, interleukin-6, and C-reactive protein. J Periodontol. 2010;81:1118–23.

    Article  CAS  PubMed  Google Scholar 

  29. Pauwels M, Weyenbergh J, Soumillion A, Proost P, Ley M. Induction by zinc of specific metallothionein isoforms in human monocytes. Eur J Biochem. 1994;220:105–10.

    Article  CAS  PubMed  Google Scholar 

  30. Vandeghinste N, Proost P, De Ley M. Metallothionein isoform gene expression in zinc-treated human peripheral blood lymphocytes. Cell Mol Biol (Noisy-le-grand). 2000;46:419–33.

    CAS  PubMed  Google Scholar 

  31. Eggert FM, McLeod MH, Flowerdew G. Effects of smoking and treatment status on periodontal bacteria: evidence that smoking influences control of periodontal bacteria at the mucosal surface of the gingival crevice. J Periodontol. 2001;72:1210–20.

    Article  CAS  PubMed  Google Scholar 

  32. Karatas O, Balci Yuce H, Tulu F, Taskan MM, Gevrek F, Toker H. Evaluation of apoptosis and hypoxia-related factors in gingival tissues of smoker and non-smoker periodontitis patients. J Periodontal Res. 2020;55:392–9.

    Article  CAS  PubMed  Google Scholar 

  33. Murphy BJ, Kimura T, Sato BG, Shi Y, Andrews GK. Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1 and hypoxia-inducible transcription factor-1alpha. Mol Cancer Res. 2008;6:483–90.

    Article  CAS  PubMed  Google Scholar 

  34. Ghoshal K, Majumder S, Li Z, Bray TM, Jacob ST. Transcriptional induction of metallothionein-I and -II genes in the livers of Cu, Zn-superoxide dismutase knockout mice. Biochem Biophys Res Commun. 1999;264:735–42.

    Article  CAS  PubMed  Google Scholar 

  35. Nakagawa I, Suzuki M, Imura N, Naganuma A. Involvement of oxidative stress in paraquat-induced metallothionein synthesis under glutathione depletion. Free Radic Biol Med. 1998;24:1390–5.

    Article  CAS  PubMed  Google Scholar 

  36. Hamouda HE. p53 antibodies, metallothioneins, and oxidative stress markers in chronic ulcerative colitis with dysplasia. World J Gastroenterol. 2011;17:2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dooley TP, Curto EV, Reddy SP, Davis RL, Lambert GW, Wilborn TW, et al. Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm Bowel Dis. 2004;10:1–14.

    Article  PubMed  Google Scholar 

  38. Socha-Banasiak A, Sputa-Grzegrzółka P, Grzegrzółka J, Pacześ K, Dzięgiel P, Sordyl B, et al. Metallothioneins in inflammatory bowel diseases: importance in pathogenesis and potential therapy target. Can J Gastroenterol Hepatol. 2021;2021:6665697.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sun J, Li L, Li L, Ding L, Liu X, Chen X, et al. Metallothionein-1 suppresses rheumatoid arthritis pathogenesis by shifting the Th17/Treg balance. Eur J Immunol. 2018;48:1550–62.

    Article  CAS  PubMed  Google Scholar 

  40. Youn J, Hwang SH, Ryoo ZY, Lynes MA, Paik DJ, Chung HS, et al. Metallothionein suppresses collagen-induced arthritis via induction of TGF-beta and down-regulation of proinflammatory mediators. Clin Exp Immunol. 2002;129:232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

Sources of financial support: The research was funded by Institutional grant from AIIMS, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VSY, AB; Formal Analysis: AB, RY, KM; Investigation: RY, DKS; Methodology: VSY, KM; Project Administration: VSY, RAM; Writing—Original Draft: VSY, AB, KM; Writing—Review and Editing: RY, DKS, RAM.

Corresponding author

Correspondence to Vikender Singh Yadav.

Ethics declarations

Conflict of interest

The authors do not have any financial interest to disclose.

Ethical approval

Ethical approval (IEC-271/04.07.2017) was granted by the Institutional Ethics committee on human subjects.

Patient consent

A written informed consent was obtained from all the participants after explaining the purpose and procedure of the study. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, V.S., Bhatia, A., Yadav, R. et al. Effect of initial periodontal therapy on metallothionein levels in smokers and non-smokers with periodontitis. Odontology (2024). https://doi.org/10.1007/s10266-024-00937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-024-00937-x

Keywords

Navigation