Skip to main content
Log in

The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Oral premalignant disorders (OPMDs) are a group of potentially malignant conditions that pose a significant health burden globally. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as crucial regulators of gene expression and have been implicated in various biological processes, including carcinogenesis. This review synthesizes existing knowledge to provide a comprehensive understanding of the molecular mechanisms underlying OPMDs and to highlight the potential of miRNAs as promising biomarkers and therapeutic targets. Additionally, this review seeks to explore the potential of miRNA-based diagnostic biomarkers for early detection of OPMDs in the current literature on miRNAs in OPMDs, examining their involvement in disease pathogenesis, diagnostic potential, and therapeutic implications. Dysregulated miRNAs can target genes involved in critical cellular processes, such as cell cycle regulation, apoptosis, and DNA repair, leading to disease progression. Notably, miR-21, miR-31, miR-135b, and miR-486-5p have shown promise as potential biomarkers for early detection of oral premalignant lesions. Furthermore, the paper discusses the therapeutic implications of miRNAs in OPMDs. Preclinical studies have demonstrated the efficacy of miRNA-targeted therapies, such as miRNA mimics and inhibitors, in suppressing the growth of oral premalignant lesions. Early-phase clinical trials have shown promising results, indicating the potential for personalized treatment approaches. The findings underscore the importance of understanding the molecular mechanisms underlying these disorders and provide insights for the development of improved diagnostic and therapeutic strategies. However, they pose certain limitations given their intrinsic variability in expression profiles, the need for optimized isolation and detection methods, and potential hurdles in transitioning from preclinical success to clinical applications. Thus, future clinical studies are warranted to fully exploit the potential of miRNAs in the management of OPMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16. https://doi.org/10.1016/j.oraloncology.2008.06.002.

    Article  PubMed  Google Scholar 

  2. Sankaranarayanan R, Ramadas K, Qiao Y. Managing the changing burden of cancer in Asia. BMC Med. 2014;12:3. https://doi.org/10.1186/1741-7015-12-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/S0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  4. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https://doi.org/10.1038/sigtrans.2015.4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shi Z, Johnson JJ, Stack MS. Detecting MicroRNA in human cancer tissues with fluorescence in situ hybridization. In: Kolpashchikov DM, Gerasimova YV, editors. Nucleic acid detect. Methods Protoc. Totowa: Humana Press; 2013. p. 19–27.

    Chapter  Google Scholar 

  6. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24. https://doi.org/10.1038/nrm3838.

    Article  CAS  PubMed  Google Scholar 

  7. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54. https://doi.org/10.1016/0092-8674(93)90529-y.

    Article  CAS  PubMed  Google Scholar 

  8. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6. https://doi.org/10.1038/35002607.

    Article  CAS  PubMed  Google Scholar 

  9. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8. https://doi.org/10.1126/science.1064921.

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66. https://doi.org/10.1038/nrc1997.

    Article  CAS  PubMed  Google Scholar 

  11. Gorenchtein M, Poh CF, Saini R, Garnis C. MicroRNAs in an oral cancer context—from basic biology to clinical utility. J Dent Res. 2012;91:440–6. https://doi.org/10.1177/0022034511431261.

    Article  CAS  PubMed  Google Scholar 

  12. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci. 2006;103:2257–61. https://doi.org/10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manikandan M, Deva Magendhra Rao AK, Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R, et al. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer. 2016;15:28. https://doi.org/10.1186/s12943-016-0512-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues—PMC n.d. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359729/ (accessed October 2, 2023).

  15. Bouquot JE, Gorlin RJ. Leukoplakia, lichen planus, and other oral keratoses in 23,616 white Americans over the age of 35 years. Oral Surg Oral Med Oral Pathol. 1986;61:373–81. https://doi.org/10.1016/0030-4220(86)90422-6.

    Article  CAS  PubMed  Google Scholar 

  16. Warnakulasuriya S, Johnson Newell W, Van Der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36:575–80. https://doi.org/10.1111/j.1600-0714.2007.00582.x.

    Article  CAS  PubMed  Google Scholar 

  17. Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, Bagan JV, González-Moles MÁ, Kerr AR, et al. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis. 2021;27:1862–80. https://doi.org/10.1111/odi.13704.

    Article  PubMed  Google Scholar 

  18. Report of National Cancer Registry Programme 2020 n.d. https://ncdirindia.org/All_Reports/Report_2020/default.aspx (accessed September 25, 2023).

  19. Zhong L, Liu Y, Wang K, He Z, Gong Z, Zhao Z, et al. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer. 2018;18:911. https://doi.org/10.1186/s12885-018-4806-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu C-J, Tsai M-M, Hung P-S, Kao S-Y, Liu T-Y, Wu K-J, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010;70:1635–44. https://doi.org/10.1158/0008-5472.CAN-09-2291.

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Zhao X, Zhang Y-J, Fang G-W, Xue Y. MicroRNA-375 as a potential serum biomarker for the diagnosis, prognosis, and chemosensitivity prediction of osteosarcoma. J Int Med Res. 2018;46:975–83. https://doi.org/10.1177/0300060517734114.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Chen W, Zha J, Yan Y, Wei Y, Chen X, et al. miR-543 acts as a novel oncogene in oral squamous cell carcinoma by targeting CYP3A5. Oncol Rep. 2019;42:973–90. https://doi.org/10.3892/or.2019.7230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen H, Liu X, Jin Z, Gou C, Liang M, Cui L, et al. A three miRNAs signature for predicting the transformation of oral leukoplakia to oral squamous cell carcinoma. Am J Cancer Res. 2018;8:1403–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Uma Maheswari TN, Nivedhitha MS, Ramani P. Expression profile of salivary micro RNA-21 and 31 in oral potentially malignant disorders. Braz Oral Res. 2020;34: e002. https://doi.org/10.1590/1807-3107bor-2020.vol34.0002.

    Article  PubMed  Google Scholar 

  25. Chang Y-A, Weng S-L, Yang S-F, Chou C-H, Huang W-C, Tu S-J, et al. A three–MicroRNA signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci. 2018;19:758. https://doi.org/10.3390/ijms19030758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu C-M, Liao Y-W, Hsieh P-L, Yu C-H, Chueh PJ, Lin T, et al. miR-1246 as a therapeutic target in oral submucosa fibrosis pathogenesis. J Formos Med Assoc. 2019;118:1093–8. https://doi.org/10.1016/j.jfma.2019.02.014.

    Article  PubMed  Google Scholar 

  27. Zheng L, Jian X, Guo F, Li N, Jiang C, Yin P, et al. miR-203 inhibits arecoline-induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis. Oncol Rep. 2015;33:2753–60. https://doi.org/10.3892/or.2015.3909.

    Article  CAS  PubMed  Google Scholar 

  28. Prasad SR, Pai A, Shyamala K, Yaji A. Expression of salivary miRNA 21 in oral submucous fibrosis (OSMF): an observational study. Microrna Shariqah United Arab Emir. 2020;9:295–302. https://doi.org/10.2174/2211536609666200127143749.

    Article  CAS  Google Scholar 

  29. Du J, Gao R, Wang Y, Nguyen T, Yang F, Shi Y, et al. MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis. 2020;11:15. https://doi.org/10.1038/s41419-019-2207-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma H, Wu Y, Yang H, Liu J, Dan H, Zeng X, et al. MicroRNAs in oral lichen planus and potential miRNA–mRNA pathogenesis with essential cytokines: a review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122:164–73. https://doi.org/10.1016/j.oooo.2016.03.018.

    Article  PubMed  Google Scholar 

  31. Tao Y, Ai R, Hao Y, Jiang L, Dan H, Ji N, et al. Role of miR-155 in immune regulation and its relevance in oral lichen planus. Exp Ther Med. 2019;17:575–86. https://doi.org/10.3892/etm.2018.7019.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadi-Motamayel F, Bayat Z, Hajilooi M, Mahdavinezhad A, Samie L, Solgi G. Evaluation of the miRNA-146a and miRNA- 155 expression levels in patients with oral lichen planus 2017.

  33. Chen J, Du G, Wang Y, Shi L, Mi J, Tang G. Integrative analysis of mRNA and miRNA expression profiles in oral lichen planus: preliminary results. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124:390-402.e17. https://doi.org/10.1016/j.oooo.2017.05.513.

    Article  PubMed  Google Scholar 

  34. Zhang W-Y, Liu W, Zhou Y-M, Shen X-M, Wang Y-F, Tang G-Y. Altered microRNA expression profile with miR-27b down-regulation correlated with disease activity of oral lichen planus. Oral Dis. 2012;18:265–70. https://doi.org/10.1111/j.1601-0825.2011.01869.x.

    Article  CAS  PubMed  Google Scholar 

  35. Stasio DD, Mosca L, Lucchese A, Cave DD, Kawasaki H, Lombardi A, et al. Salivary mir-27b expression in oral lichen planus patients: a series of cases and a narrative review of literature. Curr Top Med Chem. 2019;19:2816–23. https://doi.org/10.2174/1568026619666191121144407.

    Article  CAS  PubMed  Google Scholar 

  36. Ghallab NA, Kasem RF, El-Ghani SFA, Shaker OG. Gene expression of miRNA-138 and cyclin D1 in oral lichen planus. Clin Oral Investig. 2017;21:2481–91. https://doi.org/10.1007/s00784-017-2091-5.

    Article  PubMed  Google Scholar 

  37. Zhao B, Xu N, Li R, Yu F, Zhang F, Yang F, et al. Vitamin D/VDR signaling suppresses microRNA-802-induced apoptosis of keratinocytes in oral lichen planus. FASEB J. 2019;33:1042–50. https://doi.org/10.1096/fj.201801020RRR.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Wu W, Chen J, Li Y, Xu M, Cai Y. miR-122 and miR-199 synergistically promote autophagy in oral lichen planus by targeting the Akt/mTOR pathway. Int J Mol Med. 2019;43:1373–81. https://doi.org/10.3892/ijmm.2019.4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brito JAR, Gomes CC, Guimarães ALS, Campos K, Gomez RS. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med. 2014;43:211–6. https://doi.org/10.1111/jop.12112.

    Article  CAS  PubMed  Google Scholar 

  40. Mehterov N, Sacconi A, Pulito C, Vladimirov B, Haralanov G, Pazardjikliev D, et al. A novel panel of clinically relevant miRNAs signature accurately differentiates oral cancer from normal mucosa. Front Oncol 2022;12.

  41. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8. https://doi.org/10.1073/pnas.0804549105.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:706–13. https://doi.org/10.4161/rna.8.5.16154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hong DS, Kang Y-K, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122:1630–7. https://doi.org/10.1038/s41416-020-0802-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chitturi Suryaprakash RT, Shearston K, Farah CS, Fox SA, Iqbal MM, Kadolsky U, et al. A novel preclinical in vitro 3D model of oral carcinogenesis for biomarker discovery and drug testing. Int J Mol Sci. 2023;24:4096. https://doi.org/10.3390/ijms24044096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ottman R, Ganapathy K, Lin H-Y, Osterman CD, Dutil J, Matta J, et al. Differential expression of miRNAs contributes to tumor aggressiveness and racial disparity in African American men with prostate cancer. Cancers. 2023;15:2331. https://doi.org/10.3390/cancers15082331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rawlings-Goss RA, Campbell MC, Tishkoff SA. Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers. BMC Med Genomics. 2014;7:53. https://doi.org/10.1186/1755-8794-7-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L, et al. microRNAs expression in relation to particulate matter exposure: a systematic review. Environ Pollut. 2020;260: 113961. https://doi.org/10.1016/j.envpol.2020.113961.

    Article  CAS  PubMed  Google Scholar 

  48. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9:276. https://doi.org/10.3390/cells9020276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeyaseelan K, Herath WB, Armugam A. MicroRNAs as therapeutic targets in human diseases. Expert Opin Ther Targets. 2007;11:1119–29. https://doi.org/10.1517/14728222.11.8.1119.

    Article  CAS  PubMed  Google Scholar 

  50. Peng J, Zhao J-S, Shen Y-F, Mao H-G, Xu N-Y. MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. Int J Mol Sci. 2015;16:1448–65. https://doi.org/10.3390/ijms16011448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev. 2021;50:4141–61. https://doi.org/10.1039/D0CS00609B.

    Article  CAS  PubMed  Google Scholar 

  52. Latini A, Borgiani P, Novelli G, Ciccacci C. miRNAs in drug response variability: potential utility as biomarkers for personalized medicine. Pharmacogenomics. 2019;20:1049–59. https://doi.org/10.2217/pgs-2019-0089.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article was conceptualized by Shazia Fathima J.H. The literature search and data analysis were performed by Shazia Fathima J.H and Nazmul Huda Syed. The article was drafted by Shazia Fathima J.H. and Nazmul Huda Syed. Selvaraj Jayaraman and Ramya Sekar critically revised the work and approved the final draft for submission.

Corresponding author

Correspondence to Nazmul Huda Syed.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest of any sort with regards to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathima, J.H.S., Jayaraman, S., Sekar, R. et al. The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology (2024). https://doi.org/10.1007/s10266-024-00934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-024-00934-0

Keywords

Navigation