Skip to main content

Advertisement

Log in

Synthesis of secretory leukocyte protease inhibitor using cell-free protein synthesis system

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Secretory leukocyte protease inhibitor (SLPI) functions as a protease inhibitor that modulates excessive proteolysis in the body, exhibits broad-spectrum antimicrobial activity, regulates inflammatory responses, and plays an important role in the innate immunity. The purpose of the study was to artificially synthesize a SLPI, an antimicrobial peptide, and investigate its effect on antimicrobial activity against Porphyromonas gingivalis and interleukin-6 (IL-6) production. SLPI protein with a molecular weight of approximately 13 kDa was artificially synthesized using a cell-free protein synthesis (CFPS) system and investigated by western blotting and enzyme-linked immunosorbent assay (ELISA). Disulfide bond isomerase in the protein synthesis mixture increased the amount of SLPI synthesized. The synthesized SLPI (sSLPI) protein was purified and its antimicrobial activity was investigated based on the growth of Porphyromonas gingivalis and bacterial adhesion to oral epithelial cells. The effect of sSLPI on IL-6 production in human periodontal ligament fibroblasts (HPLFs) was examined by ELISA. Our results showed that sSLPI significantly inhibited the growth of Porphyromonas gingivalis and bacterial adhesion to oral epithelial cells and further inhibited IL-6 production by HPLFs. These results suggested that SLPI artificially synthesized using the CFPS system may play a role in the prevention of periodontal diseases through its antimicrobial and anti-inflammatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Meyerhoefer CD, Pepper JV, Manski RJ, Moeller JF. Dental care use, edentulism, and systemic health among older adults. J Dent Res. 2021;100(13):1468–74. https://doi.org/10.1177/00220345211019018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tavares M, Lindefjeld Calabi KA, San ML. Systemic diseases and oral health. Dent Clin North Am. 2014;58(4):797–814. https://doi.org/10.1016/j.cden.2014.07.005.

    Article  PubMed  Google Scholar 

  3. Hiroshima Y, Kido JI, Kido R, Yoshida K, Bando M, Kajimoto K, Yumoto H, Shinohara Y. β-defensin 2 synthesized by a cell-free protein synthesis system and encapsulated in liposomes inhibits adhesion of Porphyromonas gingivalis to oral epithelial cells. Odontology. 2023;111(4):830–8. https://doi.org/10.1007/s10266-023-00789-x.

    Article  CAS  PubMed  Google Scholar 

  4. Kido JI, Hiroshima Y, Kido R, Yoshida K, Inagaki Y, Naruishi K, Kajimoto K, Kataoka M, Shinohara Y, Yumoto H. Lipocalin 2, synthesized using a cell-free protein synthesis system and encapsulated into liposomes, inhibits the adhesion of Porphyromonas gingivalis to human oral epithelial cells. J Periodontal Res. 2023;58(2):262–73. https://doi.org/10.1111/jre.13088.

    Article  CAS  PubMed  Google Scholar 

  5. Svensson D, Aidoukovitch A, Anders E, Jönsson D, Nebel D, Nilsson BO. Secretory leukocyte protease inhibitor regulates human periodontal ligament cell production of pro-inflammatory cytokines. Inflamm Res. 2017;66(9):823–31. https://doi.org/10.1007/s00011-017-1062-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boparai JK, Sharma PK. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett. 2020;27(1):4–16. https://doi.org/10.2174/0929866526666190822165812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiroshima Y, Bando M, Kataoka M, Inagaki Y, Herzberg MC, Ross KF, Hosoi K, Nagata T, Kido JI. Regulation of antimicrobial peptide expression in human gingival keratinocytes by interleukin-1α. Arch Oral Biol. 2011;56(8):761–7. https://doi.org/10.1016/j.archoralbio.2011.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. https://doi.org/10.3390/ijms222111401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pandi A, Adam D, Zare A, Trinh VT, Schaefer SL, Burt M, Klabunde B, Bobkova E, Kushwaha M, Foroughijabbari Y, Braun P, Spahn C, Preußer C, Pogge von Strandmann E, Bode HB, von Buttlar H, Bertrams W, Jung AL, Abendroth F, Schmeck B, Hummer G, Vázquez O, Erb TJ. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nat Commun. 2023;14(1):7197. https://doi.org/10.1038/s41467-023-42434-9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 2016;28:79–93. https://doi.org/10.1016/j.cytogfr.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  11. Doumas S, Kolokotronis A, Stefanopoulos P. Anti-inflammatory and antimicrobial roles of secretory leukocyte protease inhibitor. Infect Immun. 2005;73(3):1271–4. https://doi.org/10.1128/IAI.73.3.1271-1274.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nugteren S, Samsom JN. Secretory leukocyte protease inhibitor (SLPI) in mucosal tissues: protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev. 2021;59:22–35. https://doi.org/10.1016/j.cytogfr.2021.01.005.

    Article  CAS  PubMed  Google Scholar 

  13. Cox SW, Rodriguez-Gonzalez EM, Booth V, Eley BM. Secretory leukocyte protease inhibitor and its potential interactions with elastase and cathepsin B in gingival crevicular fluid and saliva from patients with chronic periodontitis. J Periodontal Res. 2006;41(5):477–85. https://doi.org/10.1111/j.1600-0765.2006.00891.x.

    Article  CAS  PubMed  Google Scholar 

  14. Curvelo JA, Barreto AL, Portela MB, Alviano DS, Holandino C, Souto-Padrón T, Soares RM. Effect of the secretory leucocyte proteinase inhibitor (SLPI) on Candida albicans biological processes: a therapeutic alternative? Arch Oral Biol. 2014;59(9):928–37. https://doi.org/10.1016/j.archoralbio.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  15. Wahl SM, McNeely TB, Janoff EN, Shugars D, Worley P, Tucker C, Orenstein JM. Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-I. Oral Dis. 1997;3(Suppl 1):S64–9. https://doi.org/10.1111/j.1601-0825.1997.tb00377.x.

    Article  PubMed  Google Scholar 

  16. Munadziroh E, Putri GA, Ristiana V, Agustantina TH, Nirwana I, Razak FA, Surboyo MDC. The role of recombinant secretory leukocyte protease inhibitor to CD163, FGF-2, IL-1 and IL-6 expression in skin wound healing. Clin Cosmet Investig Dermatol. 2022;15:903–10. https://doi.org/10.2147/CCID.S358897.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chiba CH, Knirsch MC, Azzoni AR, Moreira AR, Stephano MA. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products. Biotechniques. 2021;70(2):126–33. https://doi.org/10.2144/btn-2020-0155.

    Article  CAS  PubMed  Google Scholar 

  18. Dondapati SK, Stech M, Zemella A, Kubick S. Cell-free protein synthesis: a promising option for future drug development. BioDrugs. 2020;34(3):327–48. https://doi.org/10.1007/s40259-020-00417-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perez JG, Stark JC, Jewett MC. Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb Perspect Biol. 2016;8(12):a023853. https://doi.org/10.1101/cshperspect.a023853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuruma Y, Ueda T. The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc. 2015;10(9):1328–44. https://doi.org/10.1038/nprot.2015.082.

    Article  CAS  PubMed  Google Scholar 

  21. Shimizu Y, Kanamori T, Ueda T. Protein synthesis by pure translation systems. Methods. 2005;36(3):299–304. https://doi.org/10.1016/j.ymeth.2005.04.006.

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu Y, Ueda T. PURE technology. Methods Mol Biol. 2010;607:11–21. https://doi.org/10.1007/978-1-60327-331-2_2.

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu Y, Kuruma Y, Kanamori T, Ueda T. The PURE system for protein production. Methods Mol Biol. 2014;1118:275–84. https://doi.org/10.1007/978-1-62703-782-2_19.

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, Cen P. Recent advances in the research and development of human defensins. Peptides. 2006;27(4):931–40. https://doi.org/10.1016/j.peptides.2005.08.018.

    Article  CAS  PubMed  Google Scholar 

  25. Thompson RC, Ohlsson K. Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc Natl Acad Sci USA. 1986;83(18):6692–6. https://doi.org/10.1073/pnas.83.18.6692.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sallenave JM, Si Tahar M, Cox G, Chignard M, Gauldie J. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. J Leukoc Biol. 1997;61(6):695–702. https://doi.org/10.1002/jlb.61.6.695.

    Article  CAS  PubMed  Google Scholar 

  27. Maharjan A, Park JH. Cell-free protein synthesis system: a new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem. 2023. https://doi.org/10.1002/bab.2514.

    Article  PubMed  Google Scholar 

  28. Lu MM, Wang QJ, Chang ZM, Wang Z, Zheng X, Shao D, Dong WF, Zhou YM. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. Int J Nanomed. 2017;12:3577–89. https://doi.org/10.2147/IJN.S133846.

    Article  CAS  Google Scholar 

  29. Uekubo A, Hiratsuka K, Aoki A, Takeuchi Y, Abiko Y, Izumi Y. Effect of antimicrobial photodynamic therapy using rose bengal and blue light-emitting diode on Porphyromonas gingivalis in vitro: Influence of oxygen during treatment. Laser Ther. 2016;25(4):299–308. https://doi.org/10.5978/islsm.16-OR-25.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zanaboni E, Arato V, Pizza M, Seubert A, Leuzzi R. 2016 A novel high-throughput assay to quantify the vaccine-induced inhibition of Bordetella pertussis adhesion to airway epithelia. BMC Microbiol. 2016;16:215. https://doi.org/10.1186/s12866-016-0829-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lucey EC, Stone PJ, Ciccolella DE, Breuer R, Christensen TG, Thompson RC, Snider GL. Recombinant human secretory leukocyte-protease inhibitor: in vitro properties, and amelioration of human neutrophil elastase-induced emphysema and secretory cell metaplasia in the hamster. J Lab Clin Med. 1990;115(2):224–32.

    CAS  PubMed  Google Scholar 

  32. Li Z, Moy A, Sohal K, Dam C, Kuo P, Whittaker J, Whittaker M, Düzgünes N, Konopka K, Franz AH, Lin-Cereghino J, Lin-Cereghino GP. Expression and characterization of recombinant human secretory leukocyte protease inhibitor (SLPI) protein from Pichia pastoris. Protein Expr Purif. 2009;67(2):175–81. https://doi.org/10.1016/j.pep.2009.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Z, Moy A, Gomez SR, Franz AH, Lin-Cereghino J, Lin-Cereghino GP. An improved method for enhanced production and biological activity of human secretory leukocyte protease inhibitor (SLPI) in Pichia pastoris. Biochem Biophys Res Commun. 2010;402(3):519–24. https://doi.org/10.1016/j.bbrc.2010.10.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prompunt E, Nernpermpisooth N, Sanit J, Kumphune S. Overexpression and pre-treatment of recombinant human secretory leukocyte protease inhibitor (rhSLPI) reduces an in vitro ischemia/reperfusion injury in rat cardiac myoblast (H9c2) cell. Biomol Concepts. 2018;9(1):17–32. https://doi.org/10.1515/bmc-2018-0004.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenblum G, Cooperman BS. Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett. 2014;588(2):261–8. https://doi.org/10.1016/j.febslet.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  36. Harcum SW, Dale BE, Seely RJ. Renaturation of recombinant secretory leukocyte protease inhibitor: aspects of disulfide bond formation kinetics. Biotechnol Lett. 1993;15:943–8. https://doi.org/10.1007/BF00131761.

    Article  CAS  Google Scholar 

  37. Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH. Antibacterial activity of antileukoprotease. Infect Immun. 1996;64(11):4520–4. https://doi.org/10.1128/iai.64.11.4520-4524.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiedow O, Harder J, Bartels J, Streit V, Christophers E. Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun. 1998;248(3):904–9. https://doi.org/10.1006/bbrc.1998.9069.

    Article  CAS  PubMed  Google Scholar 

  39. Eisenberg SP, Hale KK, Heimdal P, Thompson RC. Location of the protease-inhibitory region of secretory leukocyte protease inhibitor. J Biol Chem. 1990;265(14):7976–81.

    Article  CAS  PubMed  Google Scholar 

  40. Tomee JF, Koëter GH, Hiemstra PS, Kauffman HF. Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax. 1998;53(2):114–6. https://doi.org/10.1136/thx.53.2.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin L, Swanson B, An J, Hacker BM, Silverman GA, Dale BA, Chung WO. Differential effects of periopathogens on host protease inhibitors SLPI, elafin, SCCA1, and SCCA2. J Oral Microbiol. 2010. https://doi.org/10.3402/jom.v2i0.5070.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Laugisch O, Schacht M, Guentsch A, Kantyka T, Sroka A, Stennicke HR, Pfister W, Sculean A, Potempa J, Eick S. Periodontal pathogens affect the level of protease inhibitors in gingival crevicular fluid. Mol Oral Microbiol. 2012;27(1):45–56. https://doi.org/10.1111/j.2041-1014.2011.00631.x.

    Article  CAS  PubMed  Google Scholar 

  43. Kretschmar S, Yin L, Roberts F, London R, Flemmig TT, Arushanov D, Kaiyala K, Chung WO. Protease inhibitor levels in periodontal health and disease. J Periodontal Res. 2012;47(2):228–35. https://doi.org/10.1111/j.1600-0765.2011.01425.x.

    Article  CAS  PubMed  Google Scholar 

  44. Euzebio Alves VT, Bueno da Silva HA, de França BN, Eichler RS, Saraiva L, de Carvalho MH, Holzhausen M. Periodontal treatment downregulates protease-activated receptor 2 in human gingival crevicular fluid cells. Infect Immun. 2013;81(12):4399–407. https://doi.org/10.1128/IAI.01107-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding A, Thieblemont N, Zhu J, Jin F, Zhang J, Wright S. Secretory leukocyte protease inhibitor interferes with uptake of lipopolysaccharide by macrophages. Infect Immun. 1999;67(9):4485–9. https://doi.org/10.1128/IAI.67.9.4485-4489.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taggart CC, Greene CM, McElvaney NG, O’Neill S. Secretory leucoprotease inhibitor prevents lipopolysaccharide-induced IκBα degradation without affecting phosphorylation or ubiquitination. J Biol Chem. 2002;277(37):33648–53. https://doi.org/10.1074/jbc.M203710200.

    Article  CAS  PubMed  Google Scholar 

  47. Taggart CC, Cryan SA, Weldon S, Gibbons A, Greene CM, Kelly E, Low TB, O’neill SJ, McElvaney NG. Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. J Exp Med. 2005;202(12):1659–68. https://doi.org/10.1084/jem.20050768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank GeneFrontier Co., Ltd. (Chiba, Japan) for supporting the design of template DNA sequences with AT-rich codons for SLPI synthesis.

Funding

This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant numbers: 17H04418, 20K09941, 20K23083, and 22K17040).

Author information

Authors and Affiliations

Authors

Contributions

Yuka Hiroshima: funding acquisition, investigation, methodology, validation, writing –original draft, writing—review and editing. Rie Kido: investigation, writing—original draft, writing—review and editing. Jun-ichi Kido: conceptualization, funding acquisition, investigation, methodology, validation; writing- original draft, writing—review and editing. Mika Bando: investigation, writing—original draft, writing—review and editing. Kaya Yoshida: investigation, writing—original draft, writing—review and editing. Akikazu Murakami: investigation, writing—original draft, writing—review and editing. Yasuo Shinohara: writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Yuka Hiroshima.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 130 KB)

Supplementary file2 (TIF 105 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiroshima, Y., Kido, R., Kido, Ji. et al. Synthesis of secretory leukocyte protease inhibitor using cell-free protein synthesis system. Odontology (2024). https://doi.org/10.1007/s10266-024-00910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-024-00910-8

Keywords

Navigation