Skip to main content
Log in

Adiponectin inhibits ROS/NLRP3 inflammatory pathway through FOXO3A to ameliorate oral submucosal fibrosis

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Oral submucous fibrosis (OSF) is an oral condition characterized by chronic progression, which may lead to the development of malignancy. Currently, available treatments for OSF only provide temporary relief of symptoms, and there is a limited availability of effective interventions that can effectively cure this condition. In this study, we aimed to investigate whether adiponectin (APN) could ameliorate OSF and the mechanisms involved in it. First, human oral mucosal fibroblasts (HOMFs) were cultured, an OSF model was established using arecoline, and APN and Imiquimod treatment were administered. Then we overexpressed NLRP3 and knocked down FOXO3A. FOXO3A, fibrosis-related factors (ɑ-SMA, COL1A, CTGF), TGF-β1/Smad3 signaling-related factors (TGF-β1, p-Smad3, Smad3), NLRP3 inflammasome-related factors (NLRP3, Caspase-1, IL-1β), and ROS levels were evaluated. Finally, we explored the effect of APN on OSF in mice by in vivo experiments. We found that arecoline significantly increased ɑ-SMA, COL1A, CTGF, and TGF-β1 expressions and promoted Smad3 phosphorylation, while APN significantly inhibited the elevation of these fibrosis-related factors. ROS production was significantly elevated in HOMFs after arecoline treatment, while APN treatment inhibited ROS production. However, the addition of Imiquimod and overexpression of NLRP3 exhibited a trend of elevated ROS, resisting the inhibitory effect of APN. Furthermore, adding Imiquimod and overexpression of NLRP3 elevated ɑ-SMA, COL1A and CTGF and activated TGF-β1/Smad3 signaling pathway. Additionally, knockdown of FOXO3A enhanced APN-inhibited ɑ-SMA and COL1A. In vivo experiments further confirmed that APN ameliorated OSF in mice by inhibiting ROS/NLRP3 inflammatory pathway. In conclusion, APN ameliorated arecoline-induced OSF by promoting FOXO3A expression and downregulating the ROS/NLRP3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Qin X, Ning Y, Zhou L, Zhu Y. Oral Submucous Fibrosis: Etiological Mechanism, Malignant Transformation, Therapeutic Approaches and Targets. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24054992.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shih YH, Wang TH, Shieh TM, Tseng YH. Oral submucous fibrosis: a review on etiopathogenesis, diagnosis, and therapy. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20122940.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shen YW, Shih YH, Fuh LJ, Shieh TM. Oral submucous fibrosis: a review on biomarkers, pathogenic mechanisms, and treatments. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197231.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peng Q, Li H, Chen J, Wang Y, Tang Z. Oral submucous fibrosis in Asian countries. J Oral Pathol Med. 2020;49:294–304.

    Article  PubMed  Google Scholar 

  5. Tilakaratne WM, Ekanayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122:178–91.

    Article  PubMed  Google Scholar 

  6. Chou MY, Hsieh PL, Chao SC, Liao YW, Yu CC, Tsai CY. MiR-424/TGIF2-Mediated Pro-Fibrogenic Responses in Oral Submucous Fibrosis. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24065811.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu B, Shen M, Xiong J, Yuan Y, Wu X, Gao X, et al. Synergistic effects of betel quid chewing, tobacco use (in the form of cigarette smoking), and alcohol consumption on the risk of malignant transformation of oral submucous fibrosis (OSF): a case-control study in Hunan Province, China. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:337–45.

    Article  PubMed  Google Scholar 

  8. Rao NR, Villa A, More CB, Jayasinghe RD, Kerr AR, Johnson NW. Oral submucous fibrosis: a contemporary narrative review with a proposed inter-professional approach for an early diagnosis and clinical management. J Otolaryngol Head Neck Surg. 2020;49:3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu X, Huang X, Zhang L, Huang X, Qin Z, Hua F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-kappaB/NLRP3 inflammation pathway. BMC Nephrol. 2021;22:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8:1031–63.

    Article  PubMed  Google Scholar 

  11. Qi GM, Jia LX, Li YL, Li HH, Du J. Adiponectin suppresses angiotensin II-induced inflammation and cardiac fibrosis through activation of macrophage autophagy. Endocrinology. 2014;155:2254–65.

    Article  PubMed  Google Scholar 

  12. Wang X, Yang J, Wu L, Tong C, Zhu Y, Cai W, et al. Adiponectin inhibits the activation of lung fibroblasts and pulmonary fibrosis by regulating the nuclear factor kappa B (NF-κB) pathway. Bioengineered. 2022;13:10098–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie M, Xiong Z, Yin S, Xiong J, Li X, Jin L, et al. Adiponectin alleviates intestinal fibrosis by enhancing AMP-activated protein kinase phosphorylation. Dig Dis Sci. 2022;67:2232–43.

    Article  CAS  PubMed  Google Scholar 

  14. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18:1141–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18:2114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Artlett CM. The mechanism and regulation of the NLRP3 inflammasome during fibrosis. Biomolecules. 2022. https://doi.org/10.3390/biom12050634.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coll RC, Holley CL, Schroder K. Mitochondrial DNA synthesis fuels NLRP3 activation. Cell Res. 2018;28:1046–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luo T, Zhou X, Qin M, Lin Y, Lin J, Chen G, et al. Corilagin restrains NLRP3 inflammasome activation and pyroptosis through the ROS/TXNIP/NLRP3 pathway to prevent inflammation. Oxid Med Cell Longev. 2022;2022:1652244.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.

    Article  CAS  PubMed  Google Scholar 

  20. Lee SS, Chen YJ, Tsai CH, Huang FM, Chang YC. Elevated transglutaminase-2 expression mediates fibrosis in areca quid chewing-associated oral submucocal fibrosis via reactive oxygen species generation. Clin Oral Investig. 2016;20:1029–34.

    Article  PubMed  Google Scholar 

  21. Tan WQ, Wang K, Lv DY, Li PF. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem. 2008;283:29730–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 2017;13:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim J, Toda T, Watanabe K, Shibuya S, Ozawa Y, Izuo N, et al. Syringaresinol reverses age-related skin atrophy by suppressing FoxO3a-mediated matrix metalloproteinase-2 activation in copper/zinc superoxide dismutase-deficient mice. J Invest Dermatol. 2019;139:648–55.

    Article  CAS  PubMed  Google Scholar 

  24. Bošković M, Živković M, Korićanac G, Stanišić J, Zec M, Krga I, et al. Walnut supplementation restores the SIRT1-FoxO3a-MnSOD/Catalase axis in the heart, promotes an anti-inflammatory fatty acid profile in plasma, and lowers blood pressure on fructose-rich diet. Oxid Med Cell Longev. 2021;2021:5543025.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rajamanickam V, Yan T, Wu L, Zhao Y, Xu X, Zhu H, et al. Allylated curcumin analog CA6 inhibits TrxR1 and leads to ROS-dependent apoptotic cell death in gastric cancer through Akt-FoxO3a. Cancer Manag Res. 2020;12:247–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shrestha A, Park PH. Globular adiponectin attenuates LPS-induced reactive oxygen species production in HepG2 cells via FoxO3A and HO-1 signaling. Life Sci. 2016;148:71–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng Y, Liang H, Guo Y, Feng Y, Yao Q. Adiponectin regulates osteocytic MLO-Y4 cell apoptosis in a high-glucose environment through the AMPK/FoxO3a signaling pathway. J Cell Physiol. 2021;236:7088–96.

    Article  CAS  PubMed  Google Scholar 

  28. Xu X, Huang X, Zhang L, Huang X, Qin Z, Hua F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol. 2021;22:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiang MH, Lee KT, Chen CH, Chen KK, Wang YH. Photobiomodulation therapy inhibits oral submucous fibrosis in mice. Oral Dis. 2020;26:1474–82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, et al. K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016;45:761–73.

    Article  PubMed  Google Scholar 

  31. Zhang L, Tan J, Liu YP, Liu X, Luo M. Curcumin relieves the arecoline-induced fibrosis of oral mucosal fibroblasts via inhibiting HIF-1alpha/TGF-beta/CTGF signaling pathway: an in vitro study. Toxicol Res (Camb). 2021;10:631–8.

    Article  PubMed  Google Scholar 

  32. Chattopadhyay A, Ray JG. Molecular pathology of malignant transformation of oral submucous fibrosis. J Environ Pathol Toxicol Oncol. 2016;35:193–205.

    Article  PubMed  Google Scholar 

  33. Xu H, Lyu FY, Song JY, Xu YM, Jiang EH, Shang ZJ, et al. Research achievements of oral submucous fibrosis: progress and prospect. Biomed Res Int. 2021;2021:6631856.

    PubMed  PubMed Central  Google Scholar 

  34. Kuo MY, Chen HM, Hahn LJ, Hsieh CC, Chiang CP. Collagen biosynthesis in human oral submucous fibrosis fibroblast cultures. J Dent Res. 1995;74:1783–8.

    Article  CAS  PubMed  Google Scholar 

  35. Keen AN, Fenna AJ, McConnell JC, Sherratt MJ, Gardner P, Shiels HA. The dynamic nature of hypertrophic and fibrotic remodeling of the fish ventricle. Front Physiol. 2015;6:427.

    PubMed  Google Scholar 

  36. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008;19:133–44.

    Article  PubMed  Google Scholar 

  37. Deng YT, Chen HM, Cheng SJ, Chiang CP, Kuo MY. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin. Oral Oncol. 2009;45:e99–105.

    Article  CAS  PubMed  Google Scholar 

  38. Kavitha L, Ranganathan K, Shyam S, Fathima JHS, Umesh W, Warnakulasuriya S. Immunohistochemical biomarkers in oral submucous fibrosis: A scoping review. J Oral Pathol Med. 2022;51:594–602.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Xiong H, Hu Z, Zhao R, Hu Y, Chen W, et al. Experimental study on TGF-β1-mediated CD147 expression in oral submucous fibrosis. Oral Dis. 2018;24:993–1000.

    Article  CAS  PubMed  Google Scholar 

  40. Jing H, Tang S, Lin S, Liao M, Chen H, Fan Y, et al. Adiponectin in renal fibrosis. Aging (Albany NY). 2020;12:4660–72.

    Article  CAS  PubMed  Google Scholar 

  41. Yao R, Cao Y, He YR, Lau WB, Zeng Z, Liang ZA. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat. PLoS ONE. 2015;10:e0125169.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao D, Zhu X, Jiang L, Huang X, Zhang Y, Wei X, et al. Advances in understanding the role of adiponectin in renal fibrosis. Nephrology (Carlton). 2021;26:197–203.

    Article  CAS  PubMed  Google Scholar 

  43. Das A, Giri S. A review on role of arecoline and its metabolites in the molecular pathogenesis of oral lesions with an insight into current status of its metabolomics. Prague Med Rep. 2020;121:209–35.

    Article  PubMed  Google Scholar 

  44. Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22:550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong Z, Zhuang Q, Ye X, Ning M, Wu S, Lu L, et al. Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front Med (Lausanne). 2020;7:546445.

    Article  PubMed  Google Scholar 

  47. Wang F, Liu Y, Yang W, Yuan J, Mo Z. Adiponectin inhibits NLRP3 inflammasome by modulating the AMPK-ROS pathway. Int J Clin Exp Pathol. 2018;11:3338–47.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Clinical Medical Technology Innovation Guidance Project (No. 2021SK52004).

Author information

Authors and Affiliations

Authors

Contributions

YZ and ML contributed to conceptualization, data curation, formal analysis, validation, writing of the original draft. ZY contributed to investigation, software and methodology. XX contributed to funding acquisition, project administration, supervision and review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoping Xiao.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Ethics approval

This study was approved by Hunan SJA Laboratory Animal Co., Ltd. (No. SJA202302001: the license number) and conducted in strict accordance with the national institutes of health guidelines for the care and use of experimental animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Luo, M., Yao, Z. et al. Adiponectin inhibits ROS/NLRP3 inflammatory pathway through FOXO3A to ameliorate oral submucosal fibrosis. Odontology 112, 811–825 (2024). https://doi.org/10.1007/s10266-023-00891-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00891-0

Keywords

Navigation