Skip to main content

Advertisement

Log in

The radiographic evaluation of 11 different resin composites

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Radiopacities of dental materials used in restorations are very important in making the radiographic diagnosis. Therefore, the aim of our study was to evaluate the radiopacity of five single-shade and six simplishade resin composites with digital technique. Five different single-shade (Charisma Topaz One, Omnichroma, Clearfil Majesty ES-2 Universal, Vittra APS Unique, ZenChroma) and six different simplishade resin composites (G-aenial A’CHORD, Essentia Universal, OptiShade, Estelite Asteria, Filtek Universal, Filtek Z250) were used. For each group, five disk-shaped resin composites of 1 mm and 2 mm thicknesses were prepared. As a control, tooth slices with 1 mm and 2 mm thicknesses and a 99.5% pure aluminum step-wedge were used. The samples, tooth slices, and a step-wedge were placed on a photostimulable phosphor plate. Digital radiographs were taken from 30 and 40 cm distances (70 kVp, 7 mA 0.28 ms). The images were analyzed using ImageJ software to measure the mean gray values. Data were analyzed using SPSS 22 package program and Kruskal–Wallis H Test (p < 0.05). The highest radiopacity was seen in Filtek Universal at both distances and thicknesses. Omnichroma had the lowest radiopacity in all parameters. All specimens showed higher radiopacity than dentin. Except for Omnichroma 1 and 2 mm thick, Clearfil Majesty ES-2 Universal 2 mm thick, samples showed higher radiopacities than enamel (p < 0.05). The restorative materials tested were found to be more radiopaque than dentin. The samples passed the International Organization for Standardization for radiopacity values. The radiopacity values were affected by thickness and type of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gul P, Caglayan F, Akgul N, Akgul HM. Comparison of radiopacity of different composite resins. J Conserv Dent. 2017;20(1):17. https://doi.org/10.4103/0972-0707.209071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yaylacı A, Karaarslan E, Hatırlı H. Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system. Imaging Sci Dent. 2021;51:261–9. https://doi.org/10.5624/isd.20200334.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garoushi S, Vallittu P, Lassila L. Mechanical properties and radiopacity of flowable fiber-reinforced composite. Dent Mater J. 2019;38(2):196–202. https://doi.org/10.4012/dmj.2018-102.

    Article  CAS  PubMed  Google Scholar 

  4. Braga SRM, Vasconcelos BT, de Paula Macedo MR, Martins VRG, Sobral MAP. Reasons for placement and replacement of direct restorative materials in Brazil. Quintessence Int. 2007;38:189–94.

    Google Scholar 

  5. Dukic W. Radiopacity of composite luting cements using a digital technique. J Prosthodontics. 2017;28(2):450–9. https://doi.org/10.1111/jopr.12578.

    Article  Google Scholar 

  6. Babaier RS, Aldeeb MS, Silikas N, Watts DC. Is the radiopacity of CAD/CAM aesthetic materials sufficient? Dent Mater. 2022;38(6):1072–81. https://doi.org/10.1016/j.dental.2022.04.025.

    Article  CAS  PubMed  Google Scholar 

  7. Vyas A, Shah S, Patel N, Yagnik K, Yagnik K. Comparing radiopacity of nanohybrid composite and Giomers: an in vitro study. Univ J Dent Sci. 2022. https://doi.org/10.21276/ujds.2022.8.2.5.

    Article  Google Scholar 

  8. Motohashi J, Furukawa S, Shimoda S, Tsurumoto A. Transition of fluoride into tooth substance from sustained fluoride-releasing sealant-in vitro evaluation. J Hard Tissue Biol. 2010;19(3):195–202. https://doi.org/10.2485/jhtb.19.195.

    Article  CAS  Google Scholar 

  9. Atala MK, Atala N, Yeğin E, Bayrak S. Comparison of radiopacity of current restorative CAD/CAM blocks with digital radiography. J Est Restor Dent. 2018;31:88–92. https://doi.org/10.1111/jerd.12429.

    Article  Google Scholar 

  10. Dukic W, Delija B, Derossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J. 2012;31:47–53. https://doi.org/10.4012/dmj.2011-119.

    Article  PubMed  Google Scholar 

  11. Lachowski KM, Botta SB, Lascala CA, Matos AB, Sobral MAP. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol. 2013;42:20120153. https://doi.org/10.1259/dmfr.20120153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshida M, Yoshihara H, Honda E. History of digital detectors in intraoral radiography. Dent Health Curr Res. 2018;4:2. https://doi.org/10.4172/2470-0886.10000135.

    Article  Google Scholar 

  13. Kapila R, Matsuda Y, Araki K, Okano T, Nishikawa K, Sano T. Radiopacity measurement of restorative resins using film and three digital systems for comparison with ISO 4049: International standard. Bull Tokyo Dent Coll. 2015;56:207–14. https://doi.org/10.2209/tdcpublication.56.207.

    Article  CAS  PubMed  Google Scholar 

  14. Lowe RA. OMNICHROMA: one composite that covers all shades for an anterior tooth. Compend Contin Educ Dent. 2019;40:8–10.

    PubMed  Google Scholar 

  15. Scotti N, Alovisi C, Comba A, Ventura G, Pasqualini D, Grignolo F, et al. Evaluation of composite adaptation to pulpal chamber floor using optical coherence tomography. J Endod. 2016;42:160–3.

    Article  PubMed  Google Scholar 

  16. Yaylacı A, Karaarslan ES, Hatırlı H. Evaluation of the radiopacity of restorative materials with different structures and thicknesses using a digital radiography system. Imaging Sci in Dent. 2021;51:261–9. https://doi.org/10.5624/isd.20200334.

    Article  Google Scholar 

  17. Yeung AWK. The diagnostic relevance and interfaces covered by Mach band effect in dentistry: an analysis of the literature. Healthcare. 2022;10:632. https://doi.org/10.3390/healthcare10040632.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent. 2004;29:677–84.

    PubMed  Google Scholar 

  19. Xu X, Qiu P, Sun M, Luo J, Yu P, He L, Li J. Multifunctional epoxy resin-based composites with excellent flexural strength and X-ray imaging capacity using micro/nano structured QF-Bi2SiO5 fillers. J Mater Chem B. 2023;11:640–7.

    Article  CAS  PubMed  Google Scholar 

  20. Balci M, Turkun LS, Boyacıglu H, Guneri P, Ergucu Z. Radiopacity of posterior restorative materials: a comparative in vitro study. Oper Dent. 2023;48:337–46. https://doi.org/10.2341/22-042-L.

    Article  CAS  PubMed  Google Scholar 

  21. Erçin Ö, Kopuz D. The visual and instrumental analyses of different single-shade resin composites. Odovtos-Int J Sc. 2023. https://doi.org/10.15517/ijds.2023.55068.

    Article  Google Scholar 

  22. Saridag S, Helvacioglu-Yigit D, Alniacik G, Özcan M. Radiopacity measurements of direct and indirect resin composites at different thicknesses using digital image analysis. Dent Mater J. 2015;34:13–8. https://doi.org/10.4012/dmj.2014-181.

    Article  CAS  PubMed  Google Scholar 

  23. An S-Y, An C-H, Choi K-S, Huh K-H, Yi W-J, Heo M-S, Lee S-S, Choi S-C. Radiopacity of contemporary luting cements using conventional and digital radiography. Imaging Sci Dent. 2018;48:97–101. https://doi.org/10.5624/isd.2018.48.2.97.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gu S, Rasimick BJ, Deutsch AS, Musikant BL. Radiopacity of dental materials using a digital X-ray system. Dent Mater. 2006;22:765–70. https://doi.org/10.1016/j.dental.2005.11.004.

    Article  CAS  PubMed  Google Scholar 

  25. Abdelhamed B, Metwally AA-H, Shalaby HA. Rational durability of optical properties of chameleon effect of Omnichroma and Essentia composite thermocycled in black dark drinks (in vitro study). Bull Natl Res Cent. 2022;46(1):184. https://doi.org/10.1186/s42269-022-00865-2.

    Article  Google Scholar 

  26. Al-Hadithi AM, Gholam MK. Shade matching of OMNICHROMA analyzed by four digital and visual shade selection techniques: an in vitro study. Dent Hypotheses. 2022;13:124–7.

    Article  Google Scholar 

  27. Pereira Sanchez N, Powers JM, Paravina RD. Instrumental and visual evaluation of the color adjustment potential of resin composites. J Esthet Restor Dent. 2019;31:465–70. https://doi.org/10.1111/jerd.12488.

    Article  PubMed  Google Scholar 

  28. Durand LB, Ruiz-López J, Perez BG, Ionescu AM, Carrillo-Pérez F, Ghinea R, Perez MM. Color, lightness, chroma, hue, and translucency adjustment potential of resin composites using CIEDE2000 color difference formula. J Esthet Restor Dent. 2021;33:836–43. https://doi.org/10.1111/jerd.12689.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Bilal Yasa for his support.

Funding

This work was supported by the researchers.

Author information

Authors and Affiliations

Authors

Contributions

DK contributed to the conceptualization, methodology, writing, reviewing and editing; ÖE contributed to statistical analysis and writing, reviewing and editing.

Corresponding author

Correspondence to Dilan Kopuz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study was approved by the Ethics Committee of Biruni University (2015-KAEK-71-22-08).

Informed consent

All participants were freely invited, and those who accepted signed an informed consent approved and stamped by the local ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopuz, D., Erçin, Ö. The radiographic evaluation of 11 different resin composites. Odontology 112, 428–434 (2024). https://doi.org/10.1007/s10266-023-00854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00854-5

Keywords

Navigation