Skip to main content

Advertisement

Log in

Sodium hypochlorite against Enterococcus faecalis biofilm in dentinal tubules: effect of concentration, temperature, and exposure time

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effectiveness of two sodium hypochlorite concentrations at different exposure times and temperatures against Enterococcus faecalis biofilms of varying ages in human dentinal tubules. Dentin blocks were infected with E. faecalis for either 3 days or 3 weeks of incubation. Subsequently, the samples were exposed to sterile water, 2%, and 5.25% sodium hypochlorite for 3 and 10 min at 20 °C and 60 °C . Viability staining and confocal laser scanning microscopy were used to assess the proportion of killed bacteria in the dentinal tubules after exposure. There are no significant differences in the efficacy of E. faecalis killing between 2% sodium hypochlorite at 60 °C for various exposure times and 5.25% sodium hypochlorite at different temperatures or exposure times (P > 0.05). When both solutions were compared at the same temperatures with a 10-min exposure time, no significant differences in the effectiveness of E. faecalis killing between 2% and 5.25% sodium hypochlorite were observed (P > 0.05). To optimize the effectiveness of sodium hypochlorite in killing E. faecalis while minimizing potential damage to root dentin and soft tissue, clinicians should prioritize increasing the temperature or exposure time of sodium hypochlorite, rather than raising its concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Top. 2005;10:77–102.

    Article  Google Scholar 

  2. Siqueira JF Jr, Rôças IN. Present status and future directions: microbiology of endodontic infections. Int Endod J. 2022;55(Suppl 3):512–30.

    Article  PubMed  Google Scholar 

  3. Francisco PA, Fagundes PIDG, Lemes-Junior JC, Lima AR, Passini MRZ, Gomes BPFA. Pathogenic potential of Enterococcus faecalis strains isolated from root canals after unsuccessful endodontic treatment. Clin Oral Investig. 2021;25:5171–9.

    Article  PubMed  Google Scholar 

  4. Endo MS, Signoretti FG, Kitayama VS, Marinho AC, Martinho FC, Gomes BP. Culture and molecular detection of Enterococcus faecalis from patients with failure endodontic treatment and antimicrobial susceptibility of clinical isolates. Braz Dent Sci. 2014;17:83–91.

    Article  Google Scholar 

  5. Li H, Liu H, Zhang L, Hieawy A, Shen Y. Evaluation of extracellular polymeric substances matrix volume, surface roughness and bacterial adhesion property of oral biofilm. J Dent Sci. 2023. https://doi.org/10.1016/j.jds.2022.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haapasalo HK, Sirén EK, Waltimo TM, Ørstavik D, Haapasalo MP. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J. 2000;33:126–31.

    Article  CAS  PubMed  Google Scholar 

  7. Haapasalo M, Qian W, Portenier I, Waltimo T. Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endod. 2007;33:917–25.

    Article  PubMed  Google Scholar 

  8. Haapasalo M, Shen Y, Wang Z, Gao Y. Irrigation in endodontics. Br Dent J. 2014;216:299–303.

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Li H, Zhang L, Wang Z, Qian J, Yu M, Shen Y. In vitro evaluation of the antibacterial effect of four root canal sealers on dental biofilms. Clin Oral Investig. 2022;26:4361–8.

    Article  PubMed  Google Scholar 

  10. Liu H, Shen Y, Wang Z, Haapasalo M. The ability of different irrigation methods to remove mixtures of calcium hydroxide and barium sulphate from isthmuses in 3D printed transparent root canal models. Odontology. 2022;110:27–34.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Zuhair H, Su Z, Liu H, Wang Z, Haapasalo M, Hieawy A, Gao Y, Shen Y. Antimicrobial effects of agitational irrigation on single- and multispecies biofilms in dentin canals. Odontology. 2023;111:49–56.

    Article  CAS  PubMed  Google Scholar 

  12. Abou-Rass M, Oglesby SW. The effects of temperature, concentration, and tissue type on the solvent ability of sodium hypochlorite. J Endod. 1981;7:376–7.

    Article  CAS  PubMed  Google Scholar 

  13. Stojicic S, Zivkovic S, Qian W, Zhang H, Haapasalo M. Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant. J Endod. 2010;36:1558–62.

    Article  PubMed  Google Scholar 

  14. Tartari T, Borges MMB, de Araújo LBB, Vivan RR, Bonjardim LR, Duarte MAH. Effects of heat in the properties of NaOCl alone and mixed with etidronate and alkaline tetrasodium EDTA. Int Endod J. 2021;54:616–27.

    Article  CAS  PubMed  Google Scholar 

  15. Ma J, Wang Z, Shen Y, Haapasalo M. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 2011;37:1380–5.

    Article  PubMed  Google Scholar 

  16. Wang Z, Shen Y, Ma J, Haapasalo M. The effect of detergents on the antibacterial activity of disinfecting solutions in dentin. J Endod. 2012;38:948–53.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Shen Y, Haapasalo M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J Endod. 2012;38:1376–9.

    Article  CAS  PubMed  Google Scholar 

  18. Giardino L, Mohammadi Z, Beltrami R, Poggio C, Estrela C, Generali L. Influence of temperature on the antibacterial activity of sodium hypochlorite. Braz Dent J. 2016;27:32–6.

    Article  PubMed  Google Scholar 

  19. Iandolo A, Amato M, Dagna A, Poggio C, Abdellatif D, Franco V, Pantaleo G. Intracanal heating of sodium hypochlorite: scanning electron microscope evaluation of root canal walls. J Conserv Dent. 2018;21:569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peciuliene V, Balciuniene I, Eriksen HM, Haapasalo M. Isolation of Enterococcus faecalis in previously root-filled canals in a Lithuanian population. J Endod. 2000;26:593–5.

    Article  CAS  PubMed  Google Scholar 

  21. Shen Y, Stojicic S, Haapasalo M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod. 2011;37:657–61.

    Article  PubMed  Google Scholar 

  22. Oliveira DP, Barbizam JV, Trope M, Teixeira FB. In vitro antibacterial efficacy of endodontic irrigants against Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:702–6.

    Article  PubMed  Google Scholar 

  23. Berber VB, Gomes BP, Sena NT, Vianna ME, Ferraz CC, Zaia AA, Souza-Filho FJ. Efficacy of various concentrations of NaOCl and instrumentation techniques in reducing Enterococcus faecalis within root canals and dentinal tubules. Int Endod J. 2006;39:10–7.

    Article  CAS  PubMed  Google Scholar 

  24. Siqueira JF Jr, Rôças IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod. 2000;26:331–4.

    Article  PubMed  Google Scholar 

  25. Cvek M, Nord CE, Hollender L. Antimicrobial effect of root canal débridement in teeth with immature root. A clinical and microbiologic study. Odontol Revy. 1976;27:1–10.

    CAS  PubMed  Google Scholar 

  26. Bystrom A, Sundqvist G. The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. Int Endod J. 1985;18:35–40.

    Article  CAS  PubMed  Google Scholar 

  27. Zou L, Shen Y, Li W, Haapasalo M. Penetration of sodium hypochlorite into dentin. J Endod. 2010;36:793–6.

    Article  PubMed  Google Scholar 

  28. Kara Tuncer A, Tuncer S. Effect of different final irrigation solutions on dentinal tubule penetration depth and percentage of root canal sealer. J Endod. 2012;38:860–3.

    Article  PubMed  Google Scholar 

  29. Kuga MC, Gouveia-Jorge É, Tanomaru-Filho M, Guerreiro-Tanomaru JM, Bonetti-Filho I, Faria G. Penetration into dentin of sodium hypochlorite associated with acid solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:e155–9.

    Article  PubMed  Google Scholar 

  30. Iandolo A, Abdellatif D, Amato M, Pantaleo G, Blasi A, Franco V, Neelakantan P. Dentinal tubule penetration and root canal cleanliness following ultrasonic activation of intracanal-heated sodium hypochlorite. Aust Endod J. 2020;46:204–9.

    Article  PubMed  Google Scholar 

  31. Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J Endod. 2010;36:520–3.

    Article  PubMed  Google Scholar 

  32. Hecker S, Hiller KA, Galler KM, Erb S, Mader T, Schmalz G. Establishment of an optimized ex vivo system for artificial root canal infection evaluated by use of sodium hypochlorite and the photodynamic therapy. Int Endod J. 2013;46:449–57.

    Article  CAS  PubMed  Google Scholar 

  33. Du T, Wang Z, Shen Y, Ma J, Cao Y, Haapasalo M. Effect of long-term exposure to endodontic disinfecting solutions on young and old Enterococcus faecalis biofilms in dentin canals. J Endod. 2014;40:509–14.

    Article  PubMed  Google Scholar 

  34. Wang Z, Shen Y, Haapasalo M. Effect of smear layer against disinfection protocols on Enterococcus faecalis-infected dentin. J Endod. 2013;39:1395–400.

    Article  PubMed  Google Scholar 

  35. Pashley DH, Tao L, Boyd L, King GE, Horner JA. Scanning electron microscopy of the substructure of smear layers in human dentine. Arch Oral Biol. 1988;33:265–70.

    Article  CAS  PubMed  Google Scholar 

  36. Sen BH, Wesselink PR, Türkün M. The smear layer: a phenomenon in root canal therapy. Int Endod J. 1995;28:141–8.

    Article  CAS  PubMed  Google Scholar 

  37. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod. 2015;41:1112–5.

    Article  PubMed  Google Scholar 

  38. Boutsioukis C, Arias-Moliz MT. Present status and future directions—irrigants and irrigation methods. Int Endod J. 2022;55(Suppl. 3):588–612.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gopikrishna V, Ashok P, Kumar AP, Narayanan LL. Influence of temperature and concentration on the dynamic viscosity of sodium hypochlorite in comparison with 17% EDTA and 2% chlorhexidine gluconate: an in vitro study. J Conserv Dent. 2014;17:57–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gambarini G, De Luca M, Gerosa R. Chemical stability of heated sodium hypochlorite endodontic irrigants. J Endod. 1998;24:432–4.

    Article  CAS  PubMed  Google Scholar 

  41. Jain S, Patni PM, Jain P, Raghuwanshi S, Pandey SH, Tripathi S, Soni A. Comparison of dentinal tubular penetration of intracanal heated and preheated sodium hypochlorite through different agitation techniques. J Endod. 2023;49:686–91.

    Article  PubMed  Google Scholar 

  42. Sirtes G, Waltimo T, Schaetzle M, Zehnder M. The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy. J Endod. 2005;31:669–71.

    Article  PubMed  Google Scholar 

  43. Liu H, Shen Y, Haapasalo M. Effectiveness of six irrigation techniques with sodium hypochlorite in tissue dissolution. Cureus. 2023;15: e39208.

    PubMed  PubMed Central  Google Scholar 

  44. Weller RN, Koch KA. In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha. Int Endod J. 1995;28:86–90.

    Article  CAS  PubMed  Google Scholar 

  45. Sim TP, Knowles JC, Ng YL, Shelton J, Gulabivala K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J. 2001;34:120–32.

    Article  CAS  PubMed  Google Scholar 

  46. Pascon FM, Kantovitz KR, Sacramento PA, Nobre-dos-Santos M, Puppin-Rontani RM. Effect of sodium hypochlorite on dentine mechanical properties. A review J Dent. 2009;37:903–8.

    CAS  PubMed  Google Scholar 

  47. Xu H, Ye Z, Zhang A, Lin F, Fu J, Fok ASL. Effects of concentration of sodium hypochlorite as an endodontic irrigant on the mechanical and structural properties of root dentine: a laboratory study. Int Endod J. 2022;55:1091–102.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Guivarc’h M, Ordioni U, Ahmed HM, Cohen S, Catherine JH, Bukiet F. Sodium hypochlorite accident: a systematic review. J Endod. 2017;43:16–24.

    Article  PubMed  Google Scholar 

  49. Virdee SS, Farnell DJJ, Silva MA, Camilleri J, Cooper PR, Tomson PL. The influence of irrigant activation, concentration and contact time on sodium hypochlorite penetration into root dentine: an ex vivo experiment. Int Endod J. 2020;53:986–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Shen.

Ethics declarations

Conflict of interest

All authors report no conflicts of interest related to this study.

Research involving human participants and/or animals

Not applicable.

Ethics approval

The University of British Colombia Clinical Research Ethics Committee Review Boards approved the study (No. H12-02430).

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Nio, S. & Shen, Y. Sodium hypochlorite against Enterococcus faecalis biofilm in dentinal tubules: effect of concentration, temperature, and exposure time. Odontology 112, 390–398 (2024). https://doi.org/10.1007/s10266-023-00850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00850-9

Keywords

Navigation