Skip to main content

Advertisement

Log in

Melatonin decreases IRF-3 protein expression in the gastrocnemius muscle, reduces IL-1β and LPS plasma concentrations, and improves the lipid profile in rats with apical periodontitis fed on a high-fat diet

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

To evaluate the effects of melatonin (MEL) on the expression of toll-like receptor-4 (TLR4); myeloid differentiation primary response protein-88 (MyD88); TIR-domain-containing adapter-inducing interferon-β (TRIF); IFN regulatory-factor-3 (IRF-3); nuclear factor kappa-B (NF-κB); plasma concentrations of interleukin-1β (IL-1β) and lipopolysaccharide (LPS); and lipid profile of rats with apical periodontitis (AP) fed on a high-fat diet (HFD). Eighty 60-day-old rats were divided into eight groups: control, AP, HFD, HFDAP, CNMEL, APMEL, HFDMEL and HFDAPMEL. HFD groups were fed on a HFD for 107 days. On day 7, experimental AP was induced in the AP groups, and after 70 days, MEL (5 mg/kg) was administered to the MEL groups for 30 days. Plasma concentrations of LPS and IL-1β were analyzed using enzyme-linked immunosorbent assay, and the lipid profile was analyzed using biochemical tests. The expression of proteins involved in the TLR4 pathway (TLR4, MyD88, TRIF, IRF-3 and NF-κB) in the gastrocnemius muscle (GM) was evaluated using western blotting and qRT-PCR. Treatment with MEL decreased IRF-3 protein expression in GM and IL-1β plasma concentration in the APMEL and HFDMEL groups. Reduction in LPS plasma concentration was reported only in the HFDMEL group. Additionally, a decrease in LDL and an increase in HDL were observed in the HFDMEL and HFDAPMEL groups. Treatment with MEL exhibited anti-inflammatory and anti-hyperlipidemic effects attributed to HFD and AP by reducing the plasma concentrations of IL-1β and LPS in addition to reducing IRF-3 protein expression in the GM, which is associated with the production of inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Graunaite I, Lodiene G, Maciulskiene V. Pathogenesis of apical periodontitis: a literature review. J Oral Maxillofac Res. 2011;2(4):1–15.

    Article  Google Scholar 

  2. Stassen IG, Hommez GM, De Bruyn H, De Moor RJ. The relation between apical periodontitis and root-filled teeth in patients with periodontal treatment need. Int Endod J. 2006;39(4):299–308. https://doi.org/10.1111/j.1365-2591.2006.01098.x.

    Article  PubMed  Google Scholar 

  3. Sasaki H, Hirai K, Martins CM, Furusho H, Battaglino R, Hashimoto K. Interrelationship between periapical lesion and systemic metabolic disorders. Curr Pharm Des. 2016;22(15):2204–15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moreira AP, Texeira TF, Ferreira AB, Peluzio MC, Alfenas RC. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108(5):801–9. https://doi.org/10.1017/S0007114512001213.

    Article  PubMed  Google Scholar 

  5. Chuffa L, Fioruci-Fontanelli BA, Mendes LO, Ferreira SFR, Martinez M, Fávaro WJ, et al. Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer. 2015. https://doi.org/10.1186/s12885-015-1032-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luo J, Song J, Zhang H, Zhang F, Liu H, Li L, et al. Melatonin mediated Foxp3-downregulation decreases cytokines production via the TLR2 and TLR4 pathways in H. pylori infected mice. Int Immunopharmacol. 2018;64:116–22. https://doi.org/10.1016/j.intimp.2018.08.034.

    Article  PubMed  Google Scholar 

  7. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10(4):19. https://doi.org/10.3390/nu10040432.

    Article  Google Scholar 

  8. Brasil SC, Santos RMM, Fernandes A, Lima RS, Costa CAS, Pinto KMMDC, et al. Influence of a high-fat diet in the progression of apical periodontitis. J Endod. 2021;47(4):600–5. https://doi.org/10.1016/j.joen.2020.12.015.

    Article  PubMed  Google Scholar 

  9. Farias TDSM, Paixao RID, Cruz MM, de Sa RDCDC, Simão JJ, Antraco VJ, et al. Melatonin supplementation attenuates the pro-inflammatory adipokines expression in visceral fat from obese mice induced by a high-fat diet. Cells. 2019;8(9):1041. https://doi.org/10.3390/cells8091041.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tavares BS, Tsosura TVS, Mattera MSLC, Santelli JO, Belardi BE, Chiba FY, et al. Effects of melatonin on insulin signaling and inflammatory pathways of rats with apical periodontitis. Int Endod J. 2021;54(6):926–40. https://doi.org/10.1111/iej.13474.

    Article  PubMed  Google Scholar 

  11. Santos RMD, Marani F, Chiba FY, Mattera MSLC, Tsosura TVS, Tessarin GWL, et al. Melatonin promotes reduction in TNF levels and improves the lipid profile and insulin sensitivity in pinealectomized rats with periodontal disease. Life Sci. 2018;213:32–9. https://doi.org/10.1016/j.lfs.2018.09.056.

    Article  PubMed  Google Scholar 

  12. Milosavljević A, DJukić L, Toljić B, Milašin J, DŽeletović B, Brković B, et al. Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions. Int Endod J. 2018;51(10):1149–58. https://doi.org/10.1111/iej.12934.

    Article  PubMed  Google Scholar 

  13. Santos RM, Tsosura TVS, Belardi BE, Chaves-Neto AH, Chiba FY, Mattera MSLC, et al. Melatonin decreases plasma TNF-α and improves nonenzymatic antioxidant defence and insulin sensitivity in rats with apical periodontitis fed a high-fat diet. Int Endod J. 2022. https://doi.org/10.1111/iej.13852.

    Article  PubMed  Google Scholar 

  14. Virto L, Cano P, Jimenez-Ortega V, Fernandez-Mateos P, Gonzalez J, Haugen HJ, et al. Melatonin as adjunctive therapy in the treatment of periodontitis associated with obesity. J Clin Periodontol. 2018;45(11):1336–46. https://doi.org/10.1111/jcpe.13013.

    Article  PubMed  Google Scholar 

  15. Marani F, Santos RM, Mattera MSLC, Tsosura TVS, Pereira RF, Ueno MJP, et al. Supplementation with melatonin prevents alveolar bone resorption in rats with periodontal disease and pinealectomy. J Int Acad Periodontol. 2021;23(3):211–23.

    Google Scholar 

  16. Sarıtekin E, Üreyen, Kaya B, Aşcı H, Özmen Ö. Anti-inflammatory and antiresorptive functions of melatonin on experimentally induced periapical lesions. Int Endod J. 2019;52(10): 1466-1478. https://doi.org/10.1111/iej.13138

  17. Toledano M, Aguilera FS, Osorio E, Toledano-Osorio M, Escames G, Medina-Castillo AL, et al. Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin: morpho-histological, chemical and biomechanical studies. Dent Mater. 2021;37(7):1107–20. https://doi.org/10.1016/j.dental.2021.03.007.

    Article  PubMed  Google Scholar 

  18. Cipolla-Neto J, Amaral FGD. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990–1028. https://doi.org/10.1210/er.2018-00084.

    Article  PubMed  Google Scholar 

  19. Ramalho L, da Jornada MN, Antunes LC, Hidalgo MP. Metabolic disturbances due to a high-fat diet in a non-insulin-resistant animal model. Nutr Diabetes. 2017;7(3): e245. https://doi.org/10.1038/nutd.2016.47.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cintra LT, Samuel RO, Azuma MM, de Queiroz AO, Ervolino E, Sumida DH, et al. Multiple apical periodontitis influences serum levels of cytokines and nitric oxide. J Endod. 2016;42(5):747–51. https://doi.org/10.1016/j.joen.2016.01.022.

    Article  PubMed  Google Scholar 

  21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    Article  PubMed  Google Scholar 

  22. Carvalho CR, Brenelli SL, Silva AC, Nunes AL, Velloso LA, Saad MJ. Effect of aging on insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of rats. Endocrinology. 1996;137(1):151–9. https://doi.org/10.1210/endo.137.1.8536607.

    Article  PubMed  Google Scholar 

  23. Trøseid M, Nestvold TK, Rudi K, Thoresen H, Nielsen EW, Lappegård KT. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care. 2013;36(11):3627–32. https://doi.org/10.2337/dc13-0451.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, et al. LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediators Inflamm. 2014;2014:13. https://doi.org/10.1155/2014/986264.

    Article  Google Scholar 

  25. Wu X, Zhao K, Fang X, Feng L, Zhang W, Song X, et al. Inhibition of lipopolysaccharide-induced inflammatory bone loss by Saikosaponin D is associated with regulation of the RANKL/RANK pathway. Drug Des Devel Ther. 2021;15:4741–57. https://doi.org/10.2147/DDDT.S334421.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pereira RF, Cintra LTA, Tessarin GWL, Chiba FY, de Lima Coutinho Mattera MS, Scaramele NF, et al. Periapical lesions increase macrophage infiltration and inflammatory signaling in muscle tissue of rats. J Endod. 2017;43(6):982-988. https://doi.org/10.1016/j.joen.2017.01.030

  27. Stashenko P, Wang CY, Tani-Ishii N, Yu SM. Pathogenesis of induced rat periapical lesions. Oral Surg Oral Med Oral Pathol. 1994;78(4):494–502. https://doi.org/10.1016/0030-4220(94)90044-2.

    Article  PubMed  Google Scholar 

  28. López-Moreno J, García-Carpintero S, Jimenez-Lucena R, Haro C, Rangel-Zúñiga OA, Blanco-Rojo R, et al. Effect of dietary lipids on endotoxemia influences postprandial inflammatory response. J Agric Food Chem. 2017;65(35):7756–63. https://doi.org/10.1021/acs.jafc.7b01909.

    Article  PubMed  Google Scholar 

  29. Astolphi RD, Curbete MM, Chiba FY, Cintra LT, Ervolino E, da Mota MS, et al. Periapical lesions decrease insulin signaling in rat skeletal muscle. J Endod. 2015;41(8):1305–10. https://doi.org/10.1016/j.joen.2015.04.002.

    Article  PubMed  Google Scholar 

  30. Tsosura TVS, Chiba FY, Mattera M, Pereira RF, Cintra LTA, Conti LC, et al. Maternal apical periodontitis is associated with insulin resistance in adult offspring. Int Endod J. 2019;00:11. https://doi.org/10.1111/iej.13096.

    Article  Google Scholar 

  31. Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, et al. Inflammatory links between high fat diets and diseases. Front Immunol. 2018;9:2649. https://doi.org/10.3389/fimmu.2018.02649.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guillemot-Legris O, Masquelier J, Everard A, Cani PD, Alhouayek M, Muccioli GG. High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflamm. 2016;13(1):206. https://doi.org/10.1186/s12974-016-0666-8.

    Article  Google Scholar 

  33. Khoury RD, Prado RFD, Matos FS, Meireles BR, Cardoso FGDR, Oliveira LD, et al. The influence of adrenergic blockade in rats with apical periodontitis under chronic stress conditions. Arch Oral Biol. 2020;110:104590. https://doi.org/10.1016/j.archoralbio.2019.104590.

    Article  PubMed  Google Scholar 

  34. Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A, et al. Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun. 2003;306(4):860–6. https://doi.org/10.1016/s0006-291x(03)01049-0.

    Article  PubMed  Google Scholar 

  35. Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126(8):2839–54. https://doi.org/10.1172/JCI86080.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J Exp Med. 2003;198(7):1043–55. https://doi.org/10.1084/jem.20031023.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wei J, Wang Y, Qi X, Fan Z, Wu Y. Melatonin ameliorates hyperglycaemia-induced renal inflammation by inhibiting the activation of TLR4 and TGF-β1/Smad3 signalling pathway. Am J Transl Res. 2020;12(5):1584–99.

    PubMed  PubMed Central  Google Scholar 

  38. Hussain SA. Effect of melatonin on cholesterol absorption in rats. J Pineal Res. 2007;42(3):267–71. https://doi.org/10.1111/j.1600-079X.2006.00415.x.

    Article  PubMed  Google Scholar 

  39. Wang Y, Liu X, Wang W, Song W, Chen L, Fang Q, et al. The expression of inflammatory cytokines on the aorta endothelia are up-regulated in pinealectomized rats. Inflammation. 2013;36(6):1363–73. https://doi.org/10.1007/s10753-013-9676-1.

    Article  PubMed  Google Scholar 

  40. Nishida S, Segawa T, Murai I, Nakagawa S. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J Pineal Res. 2002;32(1):26–33.

    Article  PubMed  Google Scholar 

  41. Nishida S, Sato R, Murai I, Nakagawa S. Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats. J Pineal Res. 2003;35(4):251–6. https://doi.org/10.1034/j.1600-079X.2003.00083.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation, FAPESP (grant Numbers #2019/08520-0). The authors deny any conflicts of interest related to this study.

Funding

This work was supported by the São Paulo Research Foundation, FAPESP (grant Numbers #2019/08520-0). The authors deny any conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Rodrigo Martins dos Santos and Dóris Hissako Matsushita; Methodology: Rodrigo Martins dos Santos, Bianca Elvira Belardi, Thais Verônica Saori Tsosura, Maria Sara de Lima Coutinho Mattera, Nathalia Evelyn Silva Machado, Cristiane Cantiga Silva, Núbia Ramos Carvalho, Lara Teschi Bravo; Formal analysis and investigation: Fernando Yamamoto Chiba, Sandra Helena Penha Oliveira, Luciano Tavares Angelo Cintra and Dóris Hissako Matsushita; Writing—original draft preparation: Rodrigo Martins dos Santos; Writing—review and editing: Fernando Yamamoto Chiba and Dóris Hissako Matsushita; Supervision: Dóris Hissako Matsushita.

Corresponding author

Correspondence to Rodrigo Martins dos Santos.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, R.M., Belardi, B.E., Tsosura, T.V.S. et al. Melatonin decreases IRF-3 protein expression in the gastrocnemius muscle, reduces IL-1β and LPS plasma concentrations, and improves the lipid profile in rats with apical periodontitis fed on a high-fat diet. Odontology 111, 687–696 (2023). https://doi.org/10.1007/s10266-022-00782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00782-w

Keywords

Navigation