Skip to main content

Advertisement

Log in

Antibacterial effect, cytotoxicity, and bond strength of a modified dental adhesive containing silver nanoparticles

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the antibacterial effect, cytotoxicity, and microtensile bond strength of an adhesive system containing silver nanoparticles (NAg). NAg was synthesized and incorporated (500 and 1000 ppm) into Scotchbond Multi-Purpose (SBMP) primer and bond. A microtensile bond test (μTBS) was performed after 24 h and 1 year. The adhesive interface was characterized using a confocal Raman microscope. The antibacterial activity was assessed using agar diffusion and biofilm inhibition assays (S. mutans). MTT assay was used to assess the cytotoxicity of NAg-conditioned culture media on human dental pulp stem cells (hDPSCs). The results were statistically analyzed using analysis of variance and Tukey’s tests (α = .01). Incorporating 500 and 1000 ppm of NAg in the SBMP did not affect the μTBS after 24 h (p > 0.05). However, in the 1 year evaluation, 500 ppm presented the highest μTBS values (p < 0.05). The addition of NAg at 500 and 1000 ppm in the primer and bond led to larger inhibition halos and colony-forming units than the control (p < 0.05). For the unpolymerized and polymerized groups, the combination of primer and bond presented the highest cytotoxic effects on hDPSCs (p < 0.05). In conclusion, incorporating 500 or 1000 ppm of NAg into an etch-and-rinse adhesive system led to an antibacterial effect without altering the cytotoxicity. SBMP at 500 ppm presented a higher μTBS at 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Melo MA, Orrego S, Weir MD, Xu HH, Arola DD. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interfaces. 2016;8:11779–87.

    Article  PubMed  Google Scholar 

  2. Wu T, Li B, Zhou X, Hu Y, Zhang H, Huang Y, et al. Evaluation of novel anticaries adhesive in a secondary caries animal model. Caries Res. 2018;52:14–21.

    Article  PubMed  Google Scholar 

  3. Dutra-Correa M, Leite A, de Cara S, Diniz IMA, Marques MM, Suffredini IB, et al. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J Dent. 2018;77:66–71.

    Article  PubMed  Google Scholar 

  4. Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HH. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent. 2013;41:345–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2013;101:620–9.

    Article  PubMed  Google Scholar 

  6. Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013;29:199–210. https://doi.org/10.1016/j.dental.2012.10.005.

    Article  PubMed  Google Scholar 

  7. Zhang K, Cheng L, Wu EJ, Weir MD, Bai Y, Xu HH. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate. J Dent. 2013;41:504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HH. Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater. 2013;29:462–72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li F, Weir MD, Chen J, Xu HH. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent Mater. 2013;29:450–61. https://doi.org/10.1016/j.dental.2013.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 2013;101:929–38.

    Article  PubMed  Google Scholar 

  11. Zhang K, Melo MA, Cheng L, Weir MD, Bai Y, Xu HH. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater. 2012;28:842–52.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater. 2009;25:206–13.

    Article  PubMed  Google Scholar 

  13. Cheng L, Zhang K, Melo MA, Weir MD, Zhou X, Xu HH. Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J Dent Res. 2012;91:598–604.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fatemeh K, Mohammad Javad M, Samaneh K. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols. J Appl Oral Sci. 2017;25:367–73.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Štruncová M, Toma SH, Araki K, Bresciani E, Rodrigues FP, Medeiros IS, et al. Silver nanoparticles added to a commercial adhesive primer: colour change and resin colour stability with ageing. Int J Adhes Adhes. 2020;102:102694. https://doi.org/10.1016/j.ijadhadh.2020.102694.

    Article  Google Scholar 

  16. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59:e00213-e221.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bueno-Silva B, Koo H, Falsetta ML, Alencar SM, Ikegaki M, Rosalen PL. Effect of neovestitol-vestitol containing Brazilian red propolis on accumulation of biofilm in vitro and development of dental caries in vivo. Biofouling. 2013;29:1233–42.

    Article  PubMed  Google Scholar 

  18. Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L, et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol. 2018;233:4907–18.

    Article  PubMed  Google Scholar 

  19. Bianchi L, Ribeiro AP, Carrilho MR, Pashley DH, de Souza Costa CA, Hebling J. Cytotoxicity of adhesive systems of different hydrophilicities on cultured odontoblast-like cells. J Biomed Mater Res B Appl Biomater. 2013;101:1498–507.

    Article  PubMed  Google Scholar 

  20. Iso I. 10993–5: 2009 Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization; 1999.

    Google Scholar 

  21. Sarikaya R, Ye Q, Song L, Tamerler C, Spencer P, Misra A. Probing the mineralized tissue-adhesive interface for tensile nature and bond strength. J Mech Behav Biomed Mater. 2021;120:104563.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang L, Xiao Y-h, Xing X-d, Li F, Ma S, Qi L-l, et al. Antibacterial activity and cytotoxicity of two novel cross-linking antibacterial monomers on oral pathogens. Arch Oral Biol. 2011;56:367–73.

    Article  PubMed  Google Scholar 

  23. Carvalho FG, Puppin-Rontani RM, Fucio SB, Negrini Tde C, Carlo HL, Garcia-Godoy F. Analysis by confocal laser scanning microscopy of the MDPB bactericidal effect on S. mutans biofilm CLSM analysis of MDPB bactericidal effect on biofilm. J Appl Oral Sci. 2012;20:568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Inter Nano Lett. 2012;2:32.

    Article  Google Scholar 

  25. Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Tech. 2014;5:40.

    Article  Google Scholar 

  26. Pedrosa MS, Vilela HS, Rahhal JG, Bueno NP, Lima FS, Nogueira FN, Sipert CR. Response of periodontal ligament stem cells to lipopolysaccharide and calcium silicate-based materials. Braz Dent J. 2022;33:73–82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pedrosa MS, Nogueira FN, Sipert CR. Calcium silicate-based cements affect the cell viability and the release of TGF-β1 from apical papilla cells. Braz Dent J. 2021;32:1–7.

    Article  PubMed  Google Scholar 

  28. Elias ST, Santos AF, Garcia FC, Pereira PN, Hilgert LA, Fonseca-Bazzo YM, et al. Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Braz Dent J. 2015;26:160–8.

    Article  PubMed  Google Scholar 

  29. Barbosa MO, de Carvalho RV, Demarco FF, Ogliari FA, Zanchi CH, Piva E, et al. Experimental self-etching HEMA-free adhesive systems: cytotoxicity and degree of conversion. J Mater Sci Mater Med. 2015;26:5370.

    Article  PubMed  Google Scholar 

  30. Taubmann A, Willershausen I, Walter C, Al-Maawi S, Kaina B, Gölz L. Genotoxic and cytotoxic potential of methacrylate-based orthodontic adhesives. Clin Oral Investig. 2021;25:2569–81.

    Article  PubMed  Google Scholar 

  31. Nasseri E, Eskandarizadeh A. Comparative study of different cytotoxicity of bonding systems with different dentin thickness on L929 cell line: an experimental study. Dent Res J. 2020;17:424–32.

    Article  Google Scholar 

  32. Modena KC, Casas-Apayco LC, Atta MT, Costa CA, Hebling J, Sipert CR, et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci. 2009;17:544–54.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of “micro” bond strength test methods. Dent Mater. 2010;26:e50-62.

    Article  PubMed  Google Scholar 

  34. Devanesan S, Ponmurugan K. Cytotoxic and antimicrobial efficacy of silver nanoparticles synthesized using a traditional phytoproduct. Asafoetida Gum. 2020;15:4351–62.

    Google Scholar 

Download references

Funding

This work was supported by grants and scholarships from CNPq, CAPES, and FAPESP (process #2017/10894-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlus da Silva Pedrosa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical statement

The ethical committee of the school of dentistry of the University of São Paulo approved the experimental protocol (#1.774.950).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, J.D., Pedrosa, M.d., Toma, S.H. et al. Antibacterial effect, cytotoxicity, and bond strength of a modified dental adhesive containing silver nanoparticles. Odontology 111, 420–427 (2023). https://doi.org/10.1007/s10266-022-00752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00752-2

Keywords

Navigation