Skip to main content

Advertisement

Log in

Universal adhesive: the effect of different simulated pulpal pressure fluids and bonding modes to dentin

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of SPP with either fetal bovine serum (FBS) or deionized water (DW) on the bond strength (μTBS) of a Universal adhesive to dentin, in both etch-and-rinse (ER) and self-etch (SE) modes. The kinematic viscosity (cSt) of FBS and DW was measured at 25 °C ± 0.1 ºC. Seventy-two sound human molars were sectioned and randomly divided into three groups according to the SPP conditions: (1) Control (0 cm H2O), (2) SPP (15 cm H2O) with FBS, (3) SPP (15 cm H2O) with DW. Each group was subdivided (n = 10) based on the bonding modes: ER (37% phosphoric acid + ScothBond Universal Adhesive) or SE (ScothBond Universal Adhesive). Samples were then submitted to μTBS. Data were analyzed by Student’s t test, two-way ANOVA and Tukey tests (p < 0.05). The cSt results showed that DW (23.59 ± 0.39) had significantly higher values than FBS (22.33 ± 0.06). With regard to SPP, the control group (36.1 MPa) had significantly higher values of μTBS when compared to the SPP using FBS (31.06 MPa) and SPP with DW (26.55 MPa). According to ANOVA, the bonding modes and the interaction of simulated pulpal pressure (SPP) did not statistically influence the results (p < 0.05). The presence of SPP reduced the bond strength of Universal adhesive to dentin. DW during SPP had significantly reduced bonding values when compared to FBS. Bonding strategies were not affected by SPP when evaluated in a short period of time (24 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res. 1955;34(6):849–53. https://doi.org/10.1177/00220345550340060801.

    Article  PubMed  Google Scholar 

  2. Gonçalves SE, Cruz N, Brayner R, Huhtala MF, Borges AB, Barcellos DC. Grander system: a new technology to reduce surface tension of adhesive systems in dentistry. Acta Odontol Scand. 2014;72(1):31–5. https://doi.org/10.3109/00016357.2013.794953.

    Article  PubMed  Google Scholar 

  3. Torres GB, da Silva TM, Basting RT, Bridi EC, França FMG, Turssi CP, do Amaral FLB, de Depaiva SE, Basting RT. Resin-dentin bond stability and physical characterization of a two-step self-etching adhesive system associated with TiF4. Dent Mater. 2017;33(10):1157–70. https://doi.org/10.1016/j.dental.2017.07.016.

    Article  PubMed  Google Scholar 

  4. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27(1):17–28. https://doi.org/10.1016/j.dental.2010.10.023.

    Article  PubMed  Google Scholar 

  5. Loguercio AD, de Paula EA, Hass V, Luque-Martinez I, Reis A, Perdigão J. A new universal simplified adhesive: 36 month randomized double-blind clinical trial. J Dent. 2015;43(9):1083–92. https://doi.org/10.1016/j.jdent.2015.07.005.

    Article  PubMed  Google Scholar 

  6. Pashley EL, Tao L, Derkson G, Pashley DH. Dentin permeability and bond strengths after various surface treatments. Dent Mater. 1989;5(6):375–8. https://doi.org/10.1016/0109-5641(89)90103-6.

    Article  PubMed  Google Scholar 

  7. Hashimoto M, Ito S, Tay FR, Svizero NR, Sano H, Kaga M, Pashley DH. Fluid movement across the resin-dentin interface during and after bonding. J Dent Res. 2004;83(11):843–8. https://doi.org/10.1177/154405910408301104.

    Article  PubMed  Google Scholar 

  8. Van Meerbeek B, Yoshihara K, van Landuyt K, Yoshida Y, Peumans M. From Buonocore’s pioneering acid-etch technique to self-adhering restoratives. A status perspective of rapidly advancing dental adhesive technology. J Adhes Dent. 2020;22(1):7–34. https://doi.org/10.3290/j.jad.a43994.

    Article  PubMed  Google Scholar 

  9. Perdigão J. Current perspectives on dental adhesion: (1) Dentin adhesion—not there yet. Jap Dent Sci Review. 2020;56(1):190–207.

    Article  Google Scholar 

  10. Yoshihara K, Yoshida Y, Nagaoka N, Hayakawa S, Okihara T, De Munck J, et al. Adhesive interfacial interaction affected by different carbon-chain monomers. Dent Mater. 2013;29:888–97.

    Article  Google Scholar 

  11. Leite MLA, Costa CAS, Duarte RM, Andrade AKM, Soares DG. Bond strength and cytotoxicity of a universal adhesive according to the hybridization strategies to dentin. Braz Dent J. 2018;29(1):68–75.

    Article  Google Scholar 

  12. Hosaka K, Nakajima M, Yamauti M, Aksornmuang J, Ikeda M, Foxton RM, Pashley DH, Tagami J. Effect of simulated pulpal pressure on all-in-one adhesive bond strengths to dentine. J Dent. 2007;35(3):207–13. https://doi.org/10.1016/j.jdent.2006.08.001.

    Article  PubMed  Google Scholar 

  13. Tay FR, Pashley DH, Garcìa-Godoy F, Yiu CK. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part II. Silver tracer penetration evidence. Am J Dent. 2004;17(5):315–22.

    PubMed  Google Scholar 

  14. Tay FR, Pashley DH, Suh B, Carvalho R, Miller M. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part I. Bond strength and morphologic evidence. Am J Dent. 2004;17(4):271–8.

    PubMed  Google Scholar 

  15. Silva TM, Gonçalves LL, Siqueira EP, Pereira TC, Pontes SO, Grecca AR, Lopes SR, Gonçalves SEP. Influence of simulated pulpal pressure on the variation of intrapulpal temperature during adhesive system light-curing. Braz Dent Sci. 2017;20(2):55–61. https://doi.org/10.1007/s10103-016-2098-1.

    Article  Google Scholar 

  16. Paris Matos T, Perdigão J, de Paula E, Coppla F, Hass V, Scheffer RF, et al. Five-year clinical evaluation of a universal adhesive: a randomized double-blind trial. Dent Mater. 2020. https://doi.org/10.1016/j.dental.2020.08.007.

    Article  PubMed  Google Scholar 

  17. Nikaido T, Burrow MF, Tagami J, Takatsu T. Effect of pulpal pressure on adhesion of resin composite to dentin: bovine serum versus saline. Quintessence Int. 1995;26(3):221–6.

    PubMed  Google Scholar 

  18. Mobarak EH, El-Deeb HA, Yousry MM. Influence of different intrapulpal pressure simulation liquids on the microtensile bond strength of adhesive systems to dentin. J Adhes Dent. 2013;15(6):519–26. https://doi.org/10.3290/j.jad.a29719.

    Article  PubMed  Google Scholar 

  19. Sauro S, Pashley DH, Montanari M, Chersoni S, Carvalho RM, Toledano M, et al. Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives. Dent Mater. 2007;23(6):705–13. https://doi.org/10.1016/j.dental.2006.06.010.

    Article  PubMed  Google Scholar 

  20. Hosaka K, Nakajima M, Monticelli F, Carrilho M, Yamauti M, Aksornmuang J, et al. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives. J Adhes Dent. 2007;9(5):437–42.

    PubMed  Google Scholar 

  21. Santis LR, Silva TM, Haddad BA, Gonçalves LL, Gonçalves SEP. Influence of dentin thickness on intrapulpal temperature under simulated pulpal pressure during Nd:YAG laser irradiation. Lasers Med Sci. 2017;32(1):161–7. https://doi.org/10.1007/s10103-016-2098-1.

    Article  PubMed  Google Scholar 

  22. Belli R, Sartori N, Peruchi LD, Guimarães JC, Araújo E, Monteiro S Jr, Baratieri LN, Lohbauer U. Slow progression of dentin bond degradation during one-year water storage under simulated pulpal pressure. J Dent. 2010;38(10):802–10. https://doi.org/10.1016/j.jdent.2010.06.012.

    Article  PubMed  Google Scholar 

  23. Goodis HE, White JM, Marshall GW Jr, Yee K, Fuller N, Gee L, Marshall SJ. Effects of Nd: and Ho:yttrium-aluminium-garnet lasers on human dentine fluid flow and dental pulp-chamber temperature in vitro. Arch Oral Biol. 1997;42(12):845–54. https://doi.org/10.1016/s0003-9969(97)00076-9.

    Article  PubMed  Google Scholar 

  24. Özok AR, Wu MK, De Gee AJ, Wesselink PR. Effect of dentin perfusion on the sealing ability and microtensile bond strengths of a total-etch versus an all-in-one adhesive. Dent Mater. 2004;20(5):479–86. https://doi.org/10.1016/j.dental.2003.07.004.

    Article  PubMed  Google Scholar 

  25. Roulet JF, Van Meerbeek B. Statistics: a nuisance, a tool, or a must? J Adhes Dent. 2007;9(3):287–8.

    Google Scholar 

  26. Perote LCCC, Kamozaki MBB, Gutierrez NC, Tay FR, Pucci CR. Effect of matrix metalloproteinase-inhibiting solutions and aging methods on dentin bond strength. J Adhes Dent. 2015;17(4):347–52. https://doi.org/10.3290/j.jad.a34594.

    Article  PubMed  Google Scholar 

  27. Perdigão J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26(2):e24-37. https://doi.org/10.1016/j.dental.2009.11.149.

    Article  PubMed  Google Scholar 

  28. Özok AR, Wu MK, Wesselink PR. Comparison of the in vitro permeability of human dentine according to the dentinal region and the composition of the simulated dentinal fluid. J Dent. 2002;30(2–3):107–11. https://doi.org/10.1016/s0300-5712(02)00005-2.

    Article  PubMed  Google Scholar 

  29. Augustin C, Paul SJ, Lüthy H, Schärer P. Perfusing dentine with horse serum or physiologic saline: Its effect on adhesion of dentine bonding agents. J Oral Rehabil. 1998;25(8):596–602602. https://doi.org/10.1046/j.1365-2842.1998.00276.x.

    Article  PubMed  Google Scholar 

  30. Schaller J, Gerber S, Kämpfer U, Lejon S, Trachsel C. Human blood plasma proteins: structure and function. New Jersey: Wiley; 2008. https://doi.org/10.1002/9780470724378.

    Book  Google Scholar 

  31. Gernhardt CR, Bekes K, Fechner K, Schaller HG. The influence of human plasma used for in vitro dentin perfusion on microtensile bond strength of 5 self-conditioning dentin adhesives. Quintessence Int. 2006;37(6):429–35.

    PubMed  Google Scholar 

  32. Paul SJ, Leach M, Rueggeberg FA, Pashley DH. Effect of water content on the physical properties of model dentine primer and bonding resins. J Dent. 1999;27(3):209–14. https://doi.org/10.1016/s0300-5712(98)00042-6.

    Article  PubMed  Google Scholar 

  33. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials. 2005;26(33):6449–59. https://doi.org/10.1016/j.biomaterials.2005.04.052.

    Article  PubMed  Google Scholar 

  34. Spencer P, Ye Q, Park J, Misra A, Bohaty BS, Singh V, Parthasarathy R, Sene F, Gonçalves SEP, Laurence J. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target? Braz Dent Sci. 2012;15:4–18. https://doi.org/10.14295/bds.2012.v15i1.790.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Escribano N, Del-Nero O, La MJCD. Sealing and dentin bond strength of adhesive systems in selected areas of perfused teeth. Dent Mater. 2001;17(2):149–55. https://doi.org/10.1016/s0109-5641(00)00057-9.

    Article  PubMed  Google Scholar 

  36. Muñoz MA, Luque-Martinez I, Malaquias P, Hass V, Reis A, Campanha NH, et al. In vitro longevity of bonding properties of universal adhesives to dentin. Oper Dent. 2015;40(3):282–92. https://doi.org/10.2341/14-055-L.

    Article  PubMed  Google Scholar 

  37. Da Rosa WLDO, Piva E, Da Silva AF. Bond strength of universal adhesives: a systematic review and meta-analysis. J Dent. 2015;43(7):765–76. https://doi.org/10.1016/j.jdent.2015.04.003.

    Article  PubMed  Google Scholar 

  38. Mazzitelli C, Monticelli F, Osorio R, Casucci A, Toledano M, Ferrari M. Effect of simulated pulpal pressure on self-adhesive cements bonding to dentin. Dent Mater. 2008;24(9):1156–63.

    Article  Google Scholar 

  39. Feitosa VP, Correr AB, Correr-Sobrinho L, Sinhoreti MA. Effect of a new method to simulate pulpal pressure on bond strength and nanoleakage of dental adhesives to dentin. J Adhes Dent. 2012;14(6):517–24.

    PubMed  Google Scholar 

  40. Ikeda M, Tsubota K, Takamizawa T, Yoshida T, Miyazaki M, Platt JA. Bonding durability of single-step adhesives to previously acid-etched dentin. Oper Dent. 2008;33(6):702–9. https://doi.org/10.2341/08-26.

    Article  PubMed  Google Scholar 

  41. Langer A, Ilie N. Dentin infiltration ability of different classes of adhesive systems. Clin Oral Investig. 2013;17(1):205–16. https://doi.org/10.1007/s00784-012-0694-4.

    Article  PubMed  Google Scholar 

  42. Wagner A, Wendler M, Petschelt A, Belli R, Lohbauer U. Bonding performance of universal adhesives in different etching modes. J Dent. 2014;42(7):800–7. https://doi.org/10.1016/j.jdent.2014.04.012.

    Article  PubMed  Google Scholar 

  43. Tay FR, Pashley DH. Aggressiveness of contemporary self-etching systems. I: depth of penetration beyond dentin smear layers. Dent Mater. 2001;17(4):296–308. https://doi.org/10.1016/s0109-5641(00)00087-7.

    Article  PubMed  Google Scholar 

  44. Feitosa VP, Leme AA, Sauro S, Correr Sobrinho L, Watson TF, Sinhoreti MA, Correr AB. Hydrolytic degradation of the resin-dentin interface induced by the simulated pulpal pressure, direct and indirect water aging. J Dent. 2012;40:1134–43.

    Article  Google Scholar 

  45. Pucci CR, Gu LS, Zeng C, Gou YP, Tay FR, Niu LN. Susceptibility of contemporary single-bottle self-etch dentine adhesives to intrinsic water permeation. J Dent. 2017;66:52–61.

    Article  Google Scholar 

  46. Cardoso GC, Nakanishi L, Isolan CP, Jardim PDS, Moraes RR. Bond stability of universal adhesives applied to dentin using etch-and-rinse or self-etch strategies. Braz Dent J. 2019;30(5):467–75.

    Article  Google Scholar 

  47. Sezinando A, Serrano ML, Pérez VM, Muñoz RGA, Ceballos L, Perdigão J. Chemical adhesion of polyalkenoate-based adhesives to hydroxyapatite. J Adhes Dent. 2016;18(3):257–65. https://doi.org/10.3290/j.jad.a36222.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Department Restorative Dentistry, Institute of Science and technology. UNESP–Univ Estadual Paulista, São José dos Campos, SP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Eduardo de Paiva Gonçalves.

Ethics declarations

Conflict of interest

Authors declare that have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, L.L., Da Silva, T.M., Prakki, A. et al. Universal adhesive: the effect of different simulated pulpal pressure fluids and bonding modes to dentin. Odontology 110, 62–69 (2022). https://doi.org/10.1007/s10266-021-00633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-021-00633-0

Keywords

Navigation