pp 1–12 | Cite as

Targeted polymerase chain reaction-based expression of putative halitogenic bacteria and volatile sulphur compound analysis among halitosis patients at a tertiary hospital in Nigeria

  • Adeyinka Happy Adedapo
  • Bamidele Kolude
  • Hannah Odunola Dada-Adegbola
  • Jonathan Olujare Lawoyin
  • Henry Ademola AdeolaEmail author
Original Article


Halitosis (bad breath) can be a cause of anxiety, depression and psychosocial stress, with pathological changes in the oral microbiota playing an important role in its development. Despite its prevalence, studies on the microbiology of halitosis are rare in Nigeria. This study determines the presence of five putative periodontal pathogens viz: Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia and Treponema denticola on the tongue dorsa of halitosis and non-halitosis patients using a 16S rDNA-directed polymerase chain reaction assay. Furthermore, an association of these bacteria with oral malodour [as assessed by volatile sulphur compounds (VSC) measurements] with a portable sulphide monitor, the Halimeter (Interscan Corp, Chatsworth, California), was performed. The results showed that the prevalence of halitosis in this environment as defined by VSC level above 160 ppb is 14.9%. Halitosis is affected by gender with males having it more than the females. Males also tend to present more with self-reported complaints of halitosis than females. Age does not appear to contribute to the incidence of halitosis. Fusobacterium nucleatum, P. gingivalis, P. intermedia are responsible for increased production of VSCs in halitosis patients while A. actinomycetemcomitans and T. denticola appear to play no part in the production of VSCs. Evaluation of halitogenic bacteria and VSCs may potentially become a surrogate biomarker for monitoring halitosis. Targeted assessment of putative halitogenic bacteria may provide a rapid point-of-care diagnostic tool for halitosis.


Halitosis Halitogenic bacteria Volative sulphur compounds Halimeter Polymerase chain reaction 



HAA thanks the South African Medical Research Council (SAMRC) for a mid-career scientist and Self-initiated research grant; and the South African National Research Foundation (NRF) for incentive and research development grants for rated researchers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


No Funding.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Bornstein MM, Kislig K, Hoti BB, Seeman R, Lussi A. Prevalence of halitosis in the population of the city of Bern, Switzerland: a study comparing self-reported and clinical data. Eur J Oral Sci. 2009;117:261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Van den Broek AMWT, Feenstra L, De Baat C. A review of the current literature on aetiology and measurement methods of halitosis. J Dent. 2007;35:627–35.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kanehira T, Takahashi D, Honda O. Prevalence of oral malodour and the relationship with habitual mouth breathing in children. J Clin Paediatr Dent. 2004;28:285–8.CrossRefGoogle Scholar
  4. 4.
    Tangerman A. Halitosis in medicine: a review. Int Dent J. 2002;52(3):201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Tonzetich J. Direct gas Chromatographic analysis of sulphur compounds in mouth air in man. Archs Oral Biol. 1971;16:587–97.CrossRefGoogle Scholar
  6. 6.
    Suarez F, Springfield J, Furne J, Levitt M. Differentiation of mouth versus gut as site of origin of odoriferous breath gases after garlic ingestion. Am J Physiol. 1999;276:G425–30.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stedman RL. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968;68:153–207.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rosenberg M, Knaan T, Cohen D. Association among bad breath, body mass index, and alcohol intake. J Dent Res. 2007;86:997–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kostelc JG, Preti G, Zelson PR, Stoller NH, Tonzetich J. Salivary volatiles as indicators of periodontitis. J Periodont Res. 1980;15:185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Goldberg S, Kozlovsky A, Gordon D, Gelernter I, Sintov A, Rosenberg M. Cadaverine as a putative component of oral malodour. J Dent Res. 1994;73:1168–72.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kleinberg I, Westbay G. Oral malodour. Crit Rev Oral Biol Med. 1990;1:247–59.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Fukamachi H, Nakano Y, Okano S, Shibata Y, Abiko Y, Yamashita Y. High production of methyl mercaptan by methionine-α-deamino-γ-mercaptomethane lyase from Treponema denticola. Biochem Biophys Res Commun. 2005;331:127–31.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tonzetich J, McBride BC. Characterization of volatile sulphur production by pathogenic and non-pathogenic strains of oral Bacteroides. Arch Oral Biol. 1981;26:963–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rosenberg M, Kulkarni GV, Bosy A, McCulloch CA. Reproducibility and sensitivity of oral malodour measurement with a portable sulphide monitor. J Dent Res. 1991;70:1436–40.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tonzetich J. Production and origin of oral malodour; a review of mechanisms and methods of analysis. J Periodontol. 1977;48:172–81.CrossRefGoogle Scholar
  16. 16.
    Weinberg MA, Westphal C, Froum SJ. Comprehensive periodontics for the dental hygienist. 2nd ed. New Jersey: Prentice Hall; 2006. p. 337–46.Google Scholar
  17. 17.
    Morita M, Wang HL. Relationship of sulcular sulphide level to severity of periodontal disease and BANA test. J Periodontol. 2001;72:74–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Shimura M, Yasuno Y, Iwakura M, Sakai S, Suzuki K, Sakamoto S. A new monitor with a zinc-oxide thin film semiconductor sensor for the measurement of volatile sulphur compounds in mouth air. J Periodontol. 1996;67:396–402.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Replogle WH, Beebe DK. Halitosis. Am Fam Physician. 1996;53(1215–1218):1223.Google Scholar
  20. 20.
    Morita M, Wang HL. Association between oral malodour and adult periodontitis: a review. J Clin Periodontol. 2001;28:813.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst F. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sharma NC, Galustians HJ, Qaqish J. The clinical effectiveness of a dentifrice containing triclosan and a copolymer for controlling breath odour measured organoleptically twelve hours after toothbrushing. J Clin Dent. 1999;10(4):131–4.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yoneda M, Naito T, Suzuki N. Oral malodour associated with internal resorption. J Oral Sci. 2006;48:89–92.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Saito H, Kawaguchi Y. Halitosis prevention campaign. A report of oral health promotion activities in Japan. Int Dent J. 2002;52:197–200.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Persson S, Claesson R, Carlsson J. The capacity of subgingival microbiotas to produce volatile sulphur compounds in human serum. Oral Microbiol Immunol. 1989;4:169–72.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rosenberg M. Bad breath: research perspectives. Tel Aviv: Ramot; 1977.Google Scholar
  27. 27.
    Haraszthy VI, Zambon JJ, Sreenivasan PK, Zambon MM, Gerber D, Rego R. Identification of oral bacterial species associated with halitosis. J Am Dent Assoc. 2007;138(8):1113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol. 2003;41:558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yaegaki K, Coil JM, Kamemizu T, Miyazaki H. Tongue brushing and mouth rinsing as basic treatment measures for halitosis. Int Dent J. 2002;52:192–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cicek Y, Orbak R, Tezel A, Orbak Z, Erciyas K. Effect of tongue brushing on oral malodour in adolescents. Pediatr Int. 2003;45:719–23.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yaegaki K. Composition of malodourous gases and periodontitis. J Dent Res. 1990;69:382.Google Scholar
  32. 32.
    Almas K, Al-Sanawi E, Al-Shahrani B. The effect of tongue scraper on mutans streptococci and lactobacilli in patients with caries and periodontal disease. Odonto-stomatol Trop. 2005;28(109):5–10.Google Scholar
  33. 33.
    Kostelc JG, Zelson PR, Preti G, Tonzetich J. Quantitative differences in volatiles from healthy mouths and mouths with periodontitis. Clin Chem. 1981;27:842–5.PubMedPubMedCentralGoogle Scholar
  34. 34.
    De Boever EH, Loesche WJ. Assessing the contribution of anaerobic microflora of the tongue to oral malodour. J Am Dent Assoc. 1995;126:1384–93.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hartley MG, El-Maaytah MA, McKenzie C, Greenman J. The tongue microbiota of low odour and malodourous individuals. Microb Ecol Health Dis. 1996;9:215–23.CrossRefGoogle Scholar
  36. 36.
    McNamara TF, Alexander JF, Lee M, Plains M. The role of microorganisms in the production of oral malodour. Oral Surg. 1972;34:41–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Quirynen M, van Eldere J, Pauwels M, Bollen CML, van Steenberghe D. In vitro volatile sulphur compound production of oral bacteria in different culture media. Quintessence Int. 1999;30:351–6.PubMedGoogle Scholar
  38. 38.
    Bernardi S, Continenza MA, Al-Ahmad A, Karygianni L, Follo M, Filippi A, Macchiarelli G. Streptococcus spp. and Fusobacterium nucleatum in tongue dorsum biofilm from halitosis patients: a fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) study. New Microbiol. 2019;42(2):108–13.PubMedGoogle Scholar
  39. 39.
    Hess J, Greenman J, Duffield J. Modelling oral malodour from a tongue biofilm. J Breath Res. 2008;2(1):017003.PubMedCrossRefGoogle Scholar
  40. 40.
    Migliario M, Rimondini L. Oral and non oral diseases and conditions associated with bad breath. Minerva Stomatol. 2011;60(3):105–15.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Waler SM. The effect of zinc-containing chewing gum on volatile sulphur-containing compounds in the oral cavity. Acta Odontol Scand. 1997;55:198–200.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hartley G, McKenzie C, Greenman J, El-Maaytah MA, Scully C, Porter S. Tongue microbiota and malodour. Microb Ecol Health Dis. 1999;11:226–33.Google Scholar
  43. 43.
    Relman DA. New technologies, human microbe interactions, and the search for previously unrecognized pathogens. J Infect Dis. 2002;186(2):S254–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Donaldson AC, Riggio MP, Rolph HJ, Bagg J, Hodge PJ. Clinical examination of subjects with halitosis. Oral Dis. 2006;13:63–70.CrossRefGoogle Scholar
  45. 45.
    Arowojolu MO, Dosumu EB. Halitosis (Fetor oris) in Patients seen at the Periodontology clinic of the University College Hospital, Ibadan. The Niger Postgrad Med J. 2004;11(3):221–4.Google Scholar
  46. 46.
    Iwakura M, Yasuno Y, Shimura M, Sakamoto S. Clinical characteristics of halitosis: differences in two patient groups with primary and secondary complaints of halitosis. J Dent Res. 1994;73:1568–74.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rosenberg M, Leib E. Experiences of an Israeli malodour clinic. In: Rosenberg M, editor. Bad breath: research perspectives. Tel Aviv: Ramot Publishing-Tel Aviv University; 1995. p. 137–48.Google Scholar
  48. 48.
    Nadanovsky P, Carvalho LBM, de Leon AP. Oral malodour and its association with age and sex in a general population in Brazil. Oral Dis. 2007;13:105–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Iwu CO, Akpata O. Delusional halitosis. Review of literature and analysis of 32 cases. Br Dent J. 1989;167:294–6.Google Scholar
  50. 50.
    Miyazaki H, Sakao S, Katoh Y, Takehara T. Correlation between volatile sulphur compounds and certain oral health measurements in the general population. J Periodontol. 1995;66:679–84.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Söder B, Johansson B, Söder PO. The relation between fetor ex ore, oral hygiene and periodontal disease. Swed Dent J. 2000;24:73–82.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Rosenberg M. Bad breath and periodontal disease, how related are they? J Clin Periodontol. 2006;33:29–30.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Liu XN, Shinada K, Chen XC, Zhang BX, Yaegaki K, Kawaguchi Y. Oral malodour related parameters in the Chinese general population. J Clin Periodontol. 2006;33:31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Pryse-Phillips W. An olfactory reference syndrome. Aeta Psychiat Seand. 1971;47:484–510.Google Scholar
  55. 55.
    Scully C, El-Maaytah M, Porter SR, Greenman J. Breath odor: etiopathogenesis, assessment and management. Eur J Oral Sci. 1997;105:287–93.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Rosenberg M, Kozlovsky A, Gelernter I, Cherniak O, Cgabby J, Baht R, et al. Self estimation of oral malodour. J Dent Res. 1995;74(9):1577–82.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Van den Velde S, van Steenberghe D, Van hee P, Quirynen M. Detection of odourous compounds in breath. J Dent Res. 2009;88:285–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Greenman J, El Maaytah M, Duffield J, Spencer P, Rosenberg L, Corry D. Assessing the relationship between concentrations of malodor compounds and odour scores from judges. J Am Dent Assoc. 2005;136:749–57.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nakano Y, Yoshimura M, Koga T. Correlation between oral malodour and periodontal bacteria. Microbes Infect. 2002;4:679–83.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Bolstad AI, Jensen HB, Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev. 1996;9(1):55–71.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Awano S, Gohara K, Kurihara E. The relationship between the presence of periodontopathogenic bacteria in saliva and halitosis. Int Dent J. 2002;52:212–6.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Yoshida A, Suzuki N, Nakano Y. Development of a 5′ fluorogenic nuclease- based real-time PCR assay for quantitative detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. J Clin Microbiol. 2003;41:863–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kuboniwa M, Amano A, Kimura RK. Quantitative detection of periodontal pathogens using real-time polymerase chain reaction with TaqMan probes. Oral Microbiol Immunol. 2004;19:196–200.CrossRefGoogle Scholar
  64. 64.
    Suzuki N, Yoshida A, Saito T. Quantitative microbiological study of subgingival plaque by real-time PCR shows correlation between levels of Tannerella forsythensis and Fusobacterium spp. J Clin Microbiol. 2004;42:2255–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  1. 1.Department of Oral Pathology, College of MedicineUniversity of IbadanIbadanNigeria
  2. 2.Department of Medical Microbiology and Parasitology, College of MedicineUniversity of IbadanIbadanNigeria
  3. 3.Department of Oral and Maxillofacial Pathology, Faculty of DentistryUniversity of the Western Cape and Tygerberg HospitalCape TownSouth Africa
  4. 4.Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur HospitalUniversity of Cape TownCape TownSouth Africa

Personalised recommendations