Properties of fucoidans beneficial to oral healthcare

Abstract

Fucoidans are sulfated polysaccharides that are found in marine algae and have many useful activities, including antitumor effects, promotion of apoptosis of cancer cells, and antiviral, anti-inflammatory, and antiallergic actions. In oral medicine, several case reports have shown that fucoidan-containing creams and tablets markedly improved recurrent aphthous stomatitis, symptomatic inflamed tongue, and recurrent oral herpes labialis. The aim of this study was to examine the properties of fucoidans for use in oral healthcare. The antimicrobial, anti-adhesion, endotoxin-neutralizing, and cyclooxygenase (COX)-1 and COX-2 inhibitory activities of fucoidans were examined. Four key results were obtained: fucoidans showed strong antimicrobial activity against Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis; significantly inhibited the adhesion of S. mutans to bovine teeth and porcelain; were suggested to bind to and neutralize endotoxin (lipopolysaccharide) in an LAL assay; and showed COX-1 and/or COX-2 inhibitory activity. These results suggested that fucoidans may be useful in the field of oral healthcare.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kylin H. Zur Biochemie der Meeresalgen. Hoppe-Seyler´s Zeitschrift für physiologische Chemie. 1913. p. 171.

    Article  Google Scholar 

  2. 2.

    Sakai T, Ishizuka K, Shimanaka K, Ikai K, Kato I. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar Biotechnol. 2003;5(6):536–44.

    Article  Google Scholar 

  3. 3.

    Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003;13(6):29–40.

    Article  Google Scholar 

  4. 4.

    Usui T, Asari K, Mizuno T. Isolation of highly purified fucoidan from Eisenia bicyclis and its anticoagulant and antitumor activities. Agric Biol Chem. 1980;44(8):1965–6.

    Google Scholar 

  5. 5.

    Senthilkumar K, Manivasagan P, Venkatesan J, Kim S-K. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol. 2013;60:366–74.

    Article  Google Scholar 

  6. 6.

    Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol. 2016;82:83–8.

    Article  Google Scholar 

  7. 7.

    Teixeira MM, Hellewell PG. The effect of the selectin binding polysaccharide fucoidin on eosinophil recruitment in vivo. Br J Pharmacol. 1997;120(6):1059–66.

    Article  Google Scholar 

  8. 8.

    de Jesus Raposo M, de Morais A, de Morais R. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015;13(5):2967–3028.

    Article  Google Scholar 

  9. 9.

    Zhang Z, Teruya K, Eto H, Shirahata S. Induction of apoptosis by low-molecular-weight fucoidan through calcium- and caspase-dependent mitochondrial pathways in MDA-MB-231 breast cancer cells. Biosci Biotechnol Biochem. 2013;77(2):235–42.

    Article  Google Scholar 

  10. 10.

    Zhang Z, Teruya K, Yoshida T, Eto H, Shirahata S. Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells. Mar Drugs. 2013;11(1):81.

    Article  Google Scholar 

  11. 11.

    Takahashi H, Kawaguchi M, Kitamura K, Narumiya S, Kawamura M, Tengan I, et al. An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients. Integr Cancer Ther. 2018;17(2):282–91.

    Article  Google Scholar 

  12. 12.

    Tsubura S, Tsubura T, Waki Y. Recurrent aphthous stomatitis treated with fucoidan. J Cranio-Maxillary Dis. 2012;1(2):105. https://doi.org/10.4103/2278-9588.105699.

    Article  Google Scholar 

  13. 13.

    Tsubura S, Waki Y, Tsubura T. A case of symptomatic inflammatory tongue treated with fucoidan. Am J Med Case Rep. 2015;3(8):250–4. https://doi.org/10.12691/ajmcr-3-8-8.

    Article  Google Scholar 

  14. 14.

    Tsubura S, Suzuki A. Case report using 4% fucoidan cream for recurrent oral herpes labialis: patient symptoms markedly improved in terms of time to healing and time to loss of discomfort. Dent Open J. 2017;4(2):19–23. https://doi.org/10.17140/DOJ-4-135.

    Article  Google Scholar 

  15. 15.

    Black WAP, Dewar ET, Woodward FN. Manufacture of algal chemicals. IV—laboratory-scale isolation of fucoidin from brown marine algae. J Sci Food Agric. 1952;3(3):122–9.

    Article  Google Scholar 

  16. 16.

    Ye J, Li Y, Teruya K, Katakura Y, Ichikawa A, Eto H, et al. Enzyme-digested fucoidan etracts derived from seaweed Mozuku of Cladosiphon novae-caledoniaekylin inhibit invasion and angiogenesis of tumor cells. Cytotechnology. 2005;47(1):117–26.

    Article  Google Scholar 

  17. 17.

    Oka S. Potential synergistic effects of a mixture of mineral trioxide aggregate (MTA) cement and Bacillus subtilis in dental caries treatment. Odontology. 2018;106(1):46–55. https://doi.org/10.1007/s10266-017-0305-6.

    Article  PubMed  Google Scholar 

  18. 18.

    Kameda T, Ohkuma K, Oka S. Polytetrafluoroethylene (PTFE): a resin material for possible use in dental prostheses and devices. Dent Mater J. 2019;38:136–42.

    Article  Google Scholar 

  19. 19.

    Sakuma Y, Washio J, Sasaki K, Takahashi N. A high-sensitive and non-radioisotopic fluorescence dye method for evaluating bacterial adhesion to denture materials. Dent Mater J. 2013;32(4):585–91.

    Article  Google Scholar 

  20. 20.

    Taniguchi M, Ochiai A, Matsushima K, Tajima K, Kato T, Saitoh E, et al. Endotoxin-neutralizing activity and mechanism of action of a cationic alpha-helical antimicrobial octadecapeptide derived from alpha-amylase of rice. Peptides. 2016;75:101–8.

    Article  Google Scholar 

  21. 21.

    Sridhar KR, Vidyavathi N. Antimicrobial activity of seaweeds. Acta Hydrochim Hydrobiol. 1991;19(5):455–96.

    Article  Google Scholar 

  22. 22.

    Lee K, Jeong M, Choi S, Na S, Cha J. Synergistic effect of fucoidan with antibiotics against oral pathogenic bacteria. Arch Oral Biol. 2013;58(5):482–92.

    Article  Google Scholar 

  23. 23.

    Marudhupandi T, Kumar T. Antibacterial effect of fucoidan from Sargassum wightii against the chosen human bacterial pathogens. Int Curr Pharm J. 2013;2(10):156–8.

    Article  Google Scholar 

  24. 24.

    Marudhupandi T, Kumar T. Effect of fucoidan from Turbinaria ornata against marine ornamental fish pathogens. J Coast Life Med. 2013;1(4):282–6.

    Google Scholar 

  25. 25.

    Shibata H, Kimura-Takagi I, Nagaoka M, Hashimoto S, Sawada H, Ueyama S, et al. Inhibitory effect of Cladosiphon fucoidan on the adhesion of Helicobacter pylori to human gastric cells. J Nutr Sci Vitaminol. 1999;45(3):325–36.

    Article  Google Scholar 

  26. 26.

    Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011;9(10):2106–30.

    Article  Google Scholar 

  27. 27.

    Kantachumpoo A, Chirapart A. Components and antimicrobial activity of polysaccharides extracted from Thai brown seaweeds. Kasetsart J (Natural Science). 2010;44(2):220–33.

    Google Scholar 

  28. 28.

    Gibbons RJ, Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968;13(10):1249-IN31.

    Article  Google Scholar 

  29. 29.

    Toida T, Chaidedgumjorn A, Linhardt RJ. Structure and bioactivity of sulfated polysaccharides. Trends Glycosci Glycotechnol. 2003;15(81):29–46.

    Article  Google Scholar 

  30. 30.

    Mourão PAS, Pereira MS, Pavão MSG, Mulloy B, Tollefsen DM, Mowinckel M, et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm: sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem. 1996;271(39):23973–84.

    Article  Google Scholar 

  31. 31.

    Vaara M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin B and colistin. Med Res Rev. 2018.

  32. 32.

    Jeong J, Hwang SJ, Han MH, Lee D, Yoo JS, Choi I, et al. Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae. Mol Cell Toxicol. 2017;13(4):405–17.

    Article  Google Scholar 

  33. 33.

    Park H, Han M, Park C, Jin C, Kim G, Choi IW, et al. Anti-inflammatory effects of fucoidan through inhibition of NF-kappaB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem Toxicol. 2011;49(8):1745–52.

    Article  Google Scholar 

  34. 34.

    Park J, Cha J, Choi K, Lee K, Han K, Jang Y. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo. Int Immunopharmacol. 2017;43:91–8.

    Article  Google Scholar 

  35. 35.

    Okuda K, Kato T. Hemagglutinating activity of lipopolysaccharides from subgingival plaque bacteria. Infect Immun. 1987;55(12):3192–6.

    Article  Google Scholar 

  36. 36.

    Dewi L. In silico analysis of the potential of the active compounds fucoidan and alginate derived from Sargassum sp. as inhibitors of COX-1 and COX-2. Med Arch. 2016;70(3):172–6. https://doi.org/10.5455/medarh.2016.70.172-176.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ferreira SH. Peripheral analgesic sites of action of anti-inflammatory drugs. Int J Clin Pract Suppl. 2002;128:2–10.

    Google Scholar 

  38. 38.

    Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclooxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96(13):7563–8.

    Article  Google Scholar 

  39. 39.

    Ballou LR, Botting RM, Goorha S, Zhang J, Vane JR. Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci. 2000;97(18):10272–6.

    Article  Google Scholar 

  40. 40.

    Wallace JL, McKnight W, Reuter BK, Vergnolle N. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology. 2000;119(3):706–14.

    Article  Google Scholar 

  41. 41.

    Abe S, Hiramatsu K, Ichikawa O, Kawamoto H, Kasagi T, Miki Y, et al. Safety evaluation of excessive ingestion of Mozuku fucoidan in human. J Food Sci. 2013;78(4):T648–51.

    Article  Google Scholar 

  42. 42.

    Choi J, Raghavendran HRB, Sung N, Kim J, Chun BS, Ahn DH, et al. Effect of fucoidan on aspirin-induced stomach ulceration in rats. Chem Biol Interact. 2010;183(1):249–54.

    Article  Google Scholar 

  43. 43.

    Shirahata S, Katakura Y, Teruya K, Yamashita M, Eto H, Inventors. Kit for inducing changes in the sugar chain structure of a cancer cell surface. Japan patent. 2007. JP5201499B2.

Download references

Acknowledgements

The authors are grateful to Daiichi Sangyo Corporation (Osaka, Japan) for generously providing the fucoidan extract (Power fucoidan) and Cream (Power fucoidan cream); to Dr. Masayuki Taniguchi and Mr. Ryousuke Aida (Niigata University, Niigata, Japan) for advice on the LAL assay; to Dr. Kenjirou Nakamura (Nippon Dental University, Niigata, Japan) for advice on treatment of C. albicans; to Ms. Linda Stevens (National Institute of Health, Bethesda, USA) for valuable advice. This work was supported by a Research Promotion KAKENHI Grant (15K11063, 19K10369) from JSPS and NDU Grants (N-17010, N-18014) from The Nippon Dental University.

Author information

Affiliations

Authors

Contributions

SO, ST, and AI designed the study; SO, MO, MM, and AI performed experiments; SO, and AI analyzed data; and SO and AI wrote the paper.

Corresponding author

Correspondence to Shunya Oka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oka, S., Okabe, M., Tsubura, S. et al. Properties of fucoidans beneficial to oral healthcare. Odontology 108, 34–42 (2020). https://doi.org/10.1007/s10266-019-00437-3

Download citation

Keywords

  • Fucoidan
  • Antimicrobial
  • Endotoxin-neutralizing
  • Anti-inflammatory
  • Oral healthcare