Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite

Abstract

To evaluate the effect of immersion in 3% sodium hypochlorite solution in the resistance to cyclic fatigue of three nickel–titanium (NiTi) rotary file systems, ProTaper Next (PTN), Hyflex CM (CM), and Hyflex EDM (EDM), in a mechanical model featuring axial movement. Ninety instruments of three different NiTi rotary file systems, PTN (size 25, 0.06 taper), CM (25, 0.06), and EDM (25/~, variable taper), were randomly divided according to a 3 × 3 factorial design and tested under dynamic immersion in a 3% NaOCl solution (1 or 5 min) or without immersion, making a total of 9 groups (n = 10). Files were tested in an artificial root canal with 45° angle and 5 mm radius apical curvature being submitted to back-and-forth movements until fracture. Statistical analysis was performed using two-way factorial ANOVA with Bonferroni post-hoc tests, at a significance level of 5%. Instruments were evaluated for reliability using a Weilbull approach. Regardless of the immersion treatment, PTN had on average 1200 ± 178 cycles to fracture, CM had 1949 ± 362, and EDM had 5573 ± 853, which was a significantly different (P < 0.01). The NaOCl immersion promoted a significant reduction in the mean number of cycles to fracture (P = 0.01), and was reflected in a significant reduction of the characteristic life of the instruments of the CM end EDM groups. Within this study conditions, EDM instruments performed better to cyclic fatigue followed by CM and then PTN. Immersion in NaOCl decreased the resistance to cyclic fatigue of all tested instruments, but affected more those manufactured from CM wire.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000;26(3):161–5. https://doi.org/10.1097/00004770-200003000-00008.

    Article  Google Scholar 

  2. 2.

    Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013;39(2):163–72. https://doi.org/10.1016/j.joen.2012.11.005.

    Article  Google Scholar 

  3. 3.

    Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 1999;25(6):434–40. https://doi.org/10.1016/S0099-2399(99)80274-X.

    Article  Google Scholar 

  4. 4.

    Cheung GS, Shen Y, Darvell BW. Effect of environment on low-cycle fatigue of a nickel-titanium instrument. J Endod. 2007;33(12):1433–7. https://doi.org/10.1016/j.joen.2007.08.007.

    Article  PubMed  Google Scholar 

  5. 5.

    Pruett JP, Clement DJ, Carnes DL. Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997;23(2):77–85. https://doi.org/10.1016/S0099-2399(97)80250-6.

    Article  Google Scholar 

  6. 6.

    Li UM, Lee BS, Shih CT, Lan WH, Lin CP. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod. 2002;28(6):448–51. https://doi.org/10.1097/00004770-200206000-00007.

    Article  PubMed  Google Scholar 

  7. 7.

    Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod. 2009;35(11):1469–76. https://doi.org/10.1016/j.joen.2009.06.015.

    Article  Google Scholar 

  8. 8.

    Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod. 2007;33(3):276–9. https://doi.org/10.1016/j.joen.2006.10.012.

    Article  PubMed  Google Scholar 

  9. 9.

    Pedulla E, Grande NM, Plotino G, Pappalardo A, Rapisarda E. Cyclic fatigue resistance of three different nickel-titanium instruments after immersion in sodium hypochlorite. J Endod. 2011;37(8):1139–42. https://doi.org/10.1016/j.joen.2011.04.008.

    Article  PubMed  Google Scholar 

  10. 10.

    Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, Zaccaro Scelza M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J. 2017;50(2):143–52. https://doi.org/10.1111/iej.12613.

    Article  PubMed  Google Scholar 

  11. 11.

    Zinelis S, Eliades T, Eliades G. A metallurgical characterization of ten endodontic Ni-Ti instruments: assessing the clinical relevance of shape memory and superelastic properties of Ni-Ti endodontic instruments. Int Endod J. 2010;43(2):125–34. https://doi.org/10.1111/j.1365-2591.2009.01651.x.

    Article  PubMed  Google Scholar 

  12. 12.

    Santos JM, Palma PJ, Ramos JC, Cabrita AS, Friedman S. Periapical inflammation subsequent to coronal inoculation of dog teeth root filled with resilon/epiphany in 1 or 2 treatment sessions with chlorhexidine medication. J Endod. 2014;40(6):837–41. https://doi.org/10.1016/j.joen.2013.10.023.

    Article  PubMed  Google Scholar 

  13. 13.

    Palma PJ, Ramos JC, Martins JB, Diogenes A, Figueiredo MH, Ferreira P, et al. Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis. J Endod. 2017;43(8):1279–87. https://doi.org/10.1016/j.joen.2017.03.005.

    Article  PubMed  Google Scholar 

  14. 14.

    Diogo P, Mota M, Fernandes C, Sequeira D, Palma P, Caramelo F, et al. Is the chlorophyll derivative Zn(II)e6Me a good photosensitizer to be used in root canal disinfection? Photodiagnosis Photodyn Ther. 2018;22:205–11. https://doi.org/10.1016/j.pdpdt.2018.04.009.

    Article  PubMed  Google Scholar 

  15. 15.

    Pedulla E, Grande NM, Plotino G, Palermo F, Gambarini G, Rapisarda E. Cyclic fatigue resistance of two reciprocating nickel-titanium instruments after immersion in sodium hypochlorite. Int Endod J. 2013;46(2):155–9. https://doi.org/10.1111/j.1365-2591.2012.02100.x.

    Article  PubMed  Google Scholar 

  16. 16.

    Testarelli L, Plotino G, Al-Sudani D, Vincenzi V, Giansiracusa A, Grande NM, et al. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel. J Endod. 2011;37(9):1293–5. https://doi.org/10.1016/j.joen.2011.05.023.

    Article  PubMed  Google Scholar 

  17. 17.

    Pedulla E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod. 2013;39(2):258–61. https://doi.org/10.1016/j.joen.2012.10.025.

    Article  PubMed  Google Scholar 

  18. 18.

    Sousa J, Basto J, Roseiro L, Messias A, dos Santos JM, Palma PJ. Cyclic fatigue evaluation of three different file systems. Revista Portuguesa de Estomatologia Medicina Dentária e Cirurgia Maxilofacial. 2015;56(4):239–45. https://doi.org/10.1016/j.rpemd.2015.11.007.

    Article  Google Scholar 

  19. 19.

    de Vasconcelos RA, Murphy S, Carvalho CA, Govindjee RG, Govindjee S, Peters OA. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod. 2016;42(5):782–7. https://doi.org/10.1016/j.joen.2016.01.025.

    Article  Google Scholar 

  20. 20.

    De-Deus G, Leal Vieira VT, Nogueira da Silva EJ, Lopes H, Elias CN, Moreira EJ. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J Endod. 2014;40(4):575–9. https://doi.org/10.1016/j.joen.2013.10.013.

    Article  Google Scholar 

  21. 21.

    Nguyen HH, Fong H, Paranjpe A, Flake NM, Johnson JD, Peters OA. Evaluation of the resistance to cyclic fatigue among ProTaper Next, ProTaper Universal, and Vortex Blue rotary instruments. J Endod. 2014;40(8):1190–3. https://doi.org/10.1016/j.joen.2013.12.033.

    Article  Google Scholar 

  22. 22.

    Kaval ME, Capar ID, Ertas H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J Endod. 2016;42(12):1840–3. https://doi.org/10.1016/j.joen.2016.07.015.

    Article  PubMed  Google Scholar 

  23. 23.

    Pedulla E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, et al. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016;42(1):156–9. https://doi.org/10.1016/j.joen.2015.10.004.

    Article  PubMed  Google Scholar 

  24. 24.

    Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, et al. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J. 2016;49(5):483–93. https://doi.org/10.1111/iej.12470.

    Article  PubMed  Google Scholar 

  25. 25.

    Gundogar M, Ozyurek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue nickel-titanium instruments. J Endod. 2017;43(7):1192–6. https://doi.org/10.1016/j.joen.2017.03.009.

    Article  PubMed  Google Scholar 

  26. 26.

    Ozyurek T, Yilmaz K, Uslu G. Shaping ability of Reciproc, WaveOne GOLD, and HyFlex EDM single-file systems in simulated S-shaped canals. J Endod. 2017;43(5):805–9. https://doi.org/10.1016/j.joen.2016.12.010.

    Article  PubMed  Google Scholar 

  27. 27.

    Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of torsional and fatigue preloading on HyFlex EDM files. J Endod. 2018. https://doi.org/10.1016/j.joen.2017.12.002.

    Article  PubMed  Google Scholar 

  28. 28.

    Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, et al. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017;50(3):303–13. https://doi.org/10.1111/iej.12620.

    Article  Google Scholar 

  29. 29.

    Fayyad DM, Mahran AH. Atomic force microscopic evaluation of nanostructure alterations of rotary NiTi instruments after immersion in irrigating solutions. Int Endod J. 2014;47(6):567–73. https://doi.org/10.1111/iej.12189.

    Article  PubMed  Google Scholar 

  30. 30.

    Berutti E, Angelini E, Rigolone M, Migliaretti G, Pasqualini D. Influence of sodium hypochlorite on fracture properties and corrosion of ProTaper Rotary instruments. Int Endod J. 2006;39(9):693–9. https://doi.org/10.1111/j.1365-2591.2006.01134.x.

    Article  PubMed  Google Scholar 

  31. 31.

    Pedulla E, Franciosi G, Ounsi HF, Tricarico M, Rapisarda E, Grandini S. Cyclic fatigue resistance of nickel-titanium instruments after immersion in irrigant solutions with or without surfactants. J Endod. 2014;40(8):1245–9. https://doi.org/10.1016/j.joen.2014.02.005.

    Article  PubMed  Google Scholar 

  32. 32.

    Es-Souni M, Es-Souni M, Fischer-Brandies H. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials. 2002;23(14):2887–94.

    Article  PubMed  Google Scholar 

  33. 33.

    Pirani C, Ruggeri O, Cirulli PP, Pelliccioni GA, Gandolfi MG, Prati C. Metallurgical analysis and fatigue resistance of WaveOne and ProTaper nickel-titanium instruments. Odontology. 2014;102(2):211–6. https://doi.org/10.1007/s10266-013-0113-6.

    Article  Google Scholar 

  34. 34.

    Goo HJ, Kwak SW, Ha JH, Pedulla E, Kim HC. Mechanical properties of various heat-treated nickel-titanium rotary instruments. J Endod. 2017;43(11):1872–7. https://doi.org/10.1016/j.joen.2017.05.025.

    Article  Google Scholar 

  35. 35.

    Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J. 2011;44(4):357–61. https://doi.org/10.1111/j.1365-2591.2010.01838.x.

    Article  PubMed  Google Scholar 

  36. 36.

    Lopes HP, Elias CN, Vieira MV, Siqueira JF Jr, Mangelli M, Lopes WS, et al. Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod. 2013;39(5):693–6. https://doi.org/10.1016/j.joen.2012.11.048.

    Article  PubMed  Google Scholar 

  37. 37.

    Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015;41(4):535–8. https://doi.org/10.1016/j.joen.2014.11.008.

    Article  Google Scholar 

  38. 38.

    Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J Endod. 2016;42(6):969–71. https://doi.org/10.1016/j.joen.2016.03.010.

    Article  PubMed  Google Scholar 

  39. 39.

    Uslu G, Ozyurek T, Yilmaz K, Gundogar M. Cyclic fatigue resistance of R-Pilot, HyFlex EDM and PathFile nickel-titanium glide path files in artificial canals with double (S-shaped) curvature. Int Endod J. 2017. https://doi.org/10.1111/iej.12846.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thanks Coltène and DentsplySirona for providing the instruments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Jorge Palma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palma, P.J., Messias, A., Cerqueira, A.R. et al. Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite. Odontology 107, 324–332 (2019). https://doi.org/10.1007/s10266-018-0401-2

Download citation

Keywords

  • Dynamic cyclic fadigue test
  • Sodium hypochorite
  • M-wire
  • Controlled memory Hyflex CM
  • Electrical discharge machining hyflex EDM