Advertisement

Odontology

pp 1–9 | Cite as

Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite

  • Paulo Jorge Palma
  • Ana Messias
  • António Rosa Cerqueira
  • Luís Diogo Tavares
  • Francisco Caramelo
  • Luís Roseiro
  • João Miguel Santos
Original Article

Abstract

To evaluate the effect of immersion in 3% sodium hypochlorite solution in the resistance to cyclic fatigue of three nickel–titanium (NiTi) rotary file systems, ProTaper Next (PTN), Hyflex CM (CM), and Hyflex EDM (EDM), in a mechanical model featuring axial movement. Ninety instruments of three different NiTi rotary file systems, PTN (size 25, 0.06 taper), CM (25, 0.06), and EDM (25/~, variable taper), were randomly divided according to a 3 × 3 factorial design and tested under dynamic immersion in a 3% NaOCl solution (1 or 5 min) or without immersion, making a total of 9 groups (n = 10). Files were tested in an artificial root canal with 45° angle and 5 mm radius apical curvature being submitted to back-and-forth movements until fracture. Statistical analysis was performed using two-way factorial ANOVA with Bonferroni post-hoc tests, at a significance level of 5%. Instruments were evaluated for reliability using a Weilbull approach. Regardless of the immersion treatment, PTN had on average 1200 ± 178 cycles to fracture, CM had 1949 ± 362, and EDM had 5573 ± 853, which was a significantly different (P < 0.01). The NaOCl immersion promoted a significant reduction in the mean number of cycles to fracture (P = 0.01), and was reflected in a significant reduction of the characteristic life of the instruments of the CM end EDM groups. Within this study conditions, EDM instruments performed better to cyclic fatigue followed by CM and then PTN. Immersion in NaOCl decreased the resistance to cyclic fatigue of all tested instruments, but affected more those manufactured from CM wire.

Keywords

Dynamic cyclic fadigue test Sodium hypochorite M-wire Controlled memory Hyflex CM Electrical discharge machining hyflex EDM 

Notes

Acknowledgements

The authors thanks Coltène and DentsplySirona for providing the instruments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000;26(3):161–5.  https://doi.org/10.1097/00004770-200003000-00008.CrossRefPubMedGoogle Scholar
  2. 2.
    Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013;39(2):163–72.  https://doi.org/10.1016/j.joen.2012.11.005.CrossRefPubMedGoogle Scholar
  3. 3.
    Haikel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 1999;25(6):434–40.  https://doi.org/10.1016/S0099-2399(99)80274-X.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheung GS, Shen Y, Darvell BW. Effect of environment on low-cycle fatigue of a nickel-titanium instrument. J Endod. 2007;33(12):1433–7.  https://doi.org/10.1016/j.joen.2007.08.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Pruett JP, Clement DJ, Carnes DL. Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997;23(2):77–85.  https://doi.org/10.1016/S0099-2399(97)80250-6.CrossRefPubMedGoogle Scholar
  6. 6.
    Li UM, Lee BS, Shih CT, Lan WH, Lin CP. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod. 2002;28(6):448–51.  https://doi.org/10.1097/00004770-200206000-00007.CrossRefPubMedGoogle Scholar
  7. 7.
    Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod. 2009;35(11):1469–76.  https://doi.org/10.1016/j.joen.2009.06.015.CrossRefPubMedGoogle Scholar
  8. 8.
    Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod. 2007;33(3):276–9.  https://doi.org/10.1016/j.joen.2006.10.012.CrossRefPubMedGoogle Scholar
  9. 9.
    Pedulla E, Grande NM, Plotino G, Pappalardo A, Rapisarda E. Cyclic fatigue resistance of three different nickel-titanium instruments after immersion in sodium hypochlorite. J Endod. 2011;37(8):1139–42.  https://doi.org/10.1016/j.joen.2011.04.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, Zaccaro Scelza M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J. 2017;50(2):143–52.  https://doi.org/10.1111/iej.12613.CrossRefPubMedGoogle Scholar
  11. 11.
    Zinelis S, Eliades T, Eliades G. A metallurgical characterization of ten endodontic Ni-Ti instruments: assessing the clinical relevance of shape memory and superelastic properties of Ni-Ti endodontic instruments. Int Endod J. 2010;43(2):125–34.  https://doi.org/10.1111/j.1365-2591.2009.01651.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Santos JM, Palma PJ, Ramos JC, Cabrita AS, Friedman S. Periapical inflammation subsequent to coronal inoculation of dog teeth root filled with resilon/epiphany in 1 or 2 treatment sessions with chlorhexidine medication. J Endod. 2014;40(6):837–41.  https://doi.org/10.1016/j.joen.2013.10.023.CrossRefPubMedGoogle Scholar
  13. 13.
    Palma PJ, Ramos JC, Martins JB, Diogenes A, Figueiredo MH, Ferreira P, et al. Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis. J Endod. 2017;43(8):1279–87.  https://doi.org/10.1016/j.joen.2017.03.005.CrossRefPubMedGoogle Scholar
  14. 14.
    Diogo P, Mota M, Fernandes C, Sequeira D, Palma P, Caramelo F, et al. Is the chlorophyll derivative Zn(II)e6Me a good photosensitizer to be used in root canal disinfection? Photodiagnosis Photodyn Ther. 2018;22:205–11.  https://doi.org/10.1016/j.pdpdt.2018.04.009.CrossRefPubMedGoogle Scholar
  15. 15.
    Pedulla E, Grande NM, Plotino G, Palermo F, Gambarini G, Rapisarda E. Cyclic fatigue resistance of two reciprocating nickel-titanium instruments after immersion in sodium hypochlorite. Int Endod J. 2013;46(2):155–9.  https://doi.org/10.1111/j.1365-2591.2012.02100.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Testarelli L, Plotino G, Al-Sudani D, Vincenzi V, Giansiracusa A, Grande NM, et al. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel. J Endod. 2011;37(9):1293–5.  https://doi.org/10.1016/j.joen.2011.05.023.CrossRefPubMedGoogle Scholar
  17. 17.
    Pedulla E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod. 2013;39(2):258–61.  https://doi.org/10.1016/j.joen.2012.10.025.CrossRefPubMedGoogle Scholar
  18. 18.
    Sousa J, Basto J, Roseiro L, Messias A, dos Santos JM, Palma PJ. Cyclic fatigue evaluation of three different file systems. Revista Portuguesa de Estomatologia Medicina Dentária e Cirurgia Maxilofacial. 2015;56(4):239–45.  https://doi.org/10.1016/j.rpemd.2015.11.007.CrossRefGoogle Scholar
  19. 19.
    de Vasconcelos RA, Murphy S, Carvalho CA, Govindjee RG, Govindjee S, Peters OA. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod. 2016;42(5):782–7.  https://doi.org/10.1016/j.joen.2016.01.025.CrossRefPubMedGoogle Scholar
  20. 20.
    De-Deus G, Leal Vieira VT, Nogueira da Silva EJ, Lopes H, Elias CN, Moreira EJ. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J Endod. 2014;40(4):575–9.  https://doi.org/10.1016/j.joen.2013.10.013.CrossRefPubMedGoogle Scholar
  21. 21.
    Nguyen HH, Fong H, Paranjpe A, Flake NM, Johnson JD, Peters OA. Evaluation of the resistance to cyclic fatigue among ProTaper Next, ProTaper Universal, and Vortex Blue rotary instruments. J Endod. 2014;40(8):1190–3.  https://doi.org/10.1016/j.joen.2013.12.033.CrossRefPubMedGoogle Scholar
  22. 22.
    Kaval ME, Capar ID, Ertas H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J Endod. 2016;42(12):1840–3.  https://doi.org/10.1016/j.joen.2016.07.015.CrossRefPubMedGoogle Scholar
  23. 23.
    Pedulla E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, et al. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016;42(1):156–9.  https://doi.org/10.1016/j.joen.2015.10.004.CrossRefPubMedGoogle Scholar
  24. 24.
    Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, et al. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J. 2016;49(5):483–93.  https://doi.org/10.1111/iej.12470.CrossRefPubMedGoogle Scholar
  25. 25.
    Gundogar M, Ozyurek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue nickel-titanium instruments. J Endod. 2017;43(7):1192–6.  https://doi.org/10.1016/j.joen.2017.03.009.CrossRefPubMedGoogle Scholar
  26. 26.
    Ozyurek T, Yilmaz K, Uslu G. Shaping ability of Reciproc, WaveOne GOLD, and HyFlex EDM single-file systems in simulated S-shaped canals. J Endod. 2017;43(5):805–9.  https://doi.org/10.1016/j.joen.2016.12.010.CrossRefPubMedGoogle Scholar
  27. 27.
    Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of torsional and fatigue preloading on HyFlex EDM files. J Endod. 2018.  https://doi.org/10.1016/j.joen.2017.12.002.CrossRefPubMedGoogle Scholar
  28. 28.
    Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, et al. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017;50(3):303–13.  https://doi.org/10.1111/iej.12620.CrossRefPubMedGoogle Scholar
  29. 29.
    Fayyad DM, Mahran AH. Atomic force microscopic evaluation of nanostructure alterations of rotary NiTi instruments after immersion in irrigating solutions. Int Endod J. 2014;47(6):567–73.  https://doi.org/10.1111/iej.12189.CrossRefPubMedGoogle Scholar
  30. 30.
    Berutti E, Angelini E, Rigolone M, Migliaretti G, Pasqualini D. Influence of sodium hypochlorite on fracture properties and corrosion of ProTaper Rotary instruments. Int Endod J. 2006;39(9):693–9.  https://doi.org/10.1111/j.1365-2591.2006.01134.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Pedulla E, Franciosi G, Ounsi HF, Tricarico M, Rapisarda E, Grandini S. Cyclic fatigue resistance of nickel-titanium instruments after immersion in irrigant solutions with or without surfactants. J Endod. 2014;40(8):1245–9.  https://doi.org/10.1016/j.joen.2014.02.005.CrossRefPubMedGoogle Scholar
  32. 32.
    Es-Souni M, Es-Souni M, Fischer-Brandies H. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials. 2002;23(14):2887–94.CrossRefGoogle Scholar
  33. 33.
    Pirani C, Ruggeri O, Cirulli PP, Pelliccioni GA, Gandolfi MG, Prati C. Metallurgical analysis and fatigue resistance of WaveOne and ProTaper nickel-titanium instruments. Odontology. 2014;102(2):211–6.  https://doi.org/10.1007/s10266-013-0113-6.CrossRefPubMedGoogle Scholar
  34. 34.
    Goo HJ, Kwak SW, Ha JH, Pedulla E, Kim HC. Mechanical properties of various heat-treated nickel-titanium rotary instruments. J Endod. 2017;43(11):1872–7.  https://doi.org/10.1016/j.joen.2017.05.025.CrossRefPubMedGoogle Scholar
  35. 35.
    Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J. 2011;44(4):357–61.  https://doi.org/10.1111/j.1365-2591.2010.01838.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Lopes HP, Elias CN, Vieira MV, Siqueira JF Jr, Mangelli M, Lopes WS, et al. Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod. 2013;39(5):693–6.  https://doi.org/10.1016/j.joen.2012.11.048.CrossRefPubMedGoogle Scholar
  37. 37.
    Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015;41(4):535–8.  https://doi.org/10.1016/j.joen.2014.11.008.CrossRefPubMedGoogle Scholar
  38. 38.
    Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J Endod. 2016;42(6):969–71.  https://doi.org/10.1016/j.joen.2016.03.010.CrossRefPubMedGoogle Scholar
  39. 39.
    Uslu G, Ozyurek T, Yilmaz K, Gundogar M. Cyclic fatigue resistance of R-Pilot, HyFlex EDM and PathFile nickel-titanium glide path files in artificial canals with double (S-shaped) curvature. Int Endod J. 2017.  https://doi.org/10.1111/iej.12846.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  1. 1.Institute of Endodontics, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Dentistry, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  5. 5.Department of Mechanical Engineering, Institute of Engineering of CoimbraPolytechnic - ISECCoimbraPortugal
  6. 6.Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal

Personalised recommendations