Oral antiseptics and nickel–titanium alloys: mechanical and chemical effects of interaction


The effect of oral antiseptics on the corrosion of nickel–titanium (NiTi) alloys with various coating was investigated. Uncoated, titanium nitride-coated and rhodium-coated NiTi archwires (0.020 × 0.020″) were tested in interaction with artificial saliva pH 4.8 and oral antiseptics based on hyaluronic acid (Gengigel), chlorhexidine (Curasept) and essential oils in alcohol base (Listerine). The dynamics of nickel and titanium ions release were recorded during 28 days. Springback ratio and modulus of resilience were assessed by three-point bending test. The results showed that corrosion of NiTi is related to type of antiseptic mouth rinse and coating formulations. Exposure to an artificial saliva and antiseptics tend to reduce flexibility and resilience of NiTi archwires. The influence of the media is more significant than the influence of the type of the alloys coating. The largest release of nickel ions is in the first 3 days. Antiseptics do not cause further deterioration of the elastic properties in uncoated NiTi compared to saliva. As a result of exposure of nitrified NiTi wires in Listerine, there is bigger release of nickel ions, decrease in elastic properties and lower force delivery in unload. Listerine tends to reduce elastic properties of rhodium-coated wires also. In conclusion, except for Listerine, changes of mechanical characteristics induced by antiseptics are small and would not have a clinically important impact. Generally, Curasept would be the most suitable option.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Seneviratne CJ, Zhang CF, Samaranayake LP. Dental plaque biofilm in oral health and disease. Chin J Dent Res. 2011;14:87–94.

    PubMed  Google Scholar 

  2. 2.

    Mei L, Chieng J, Wong C, Benic G, Farella M. Factors affecting dental biofilm in patients wearing fixed orthodontic appliances. Prog Orthod. 2017;18:4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pithon MM, Sant’Anna LI, Baião FC, dos Santos RL, Coqueiro Rda S, Maia LC. Assessment of the effectiveness of mouthwashes in reducing cariogenic biofilm in orthodontic patients: a systematic review. J Dent. 2015;43:297–308.

    Article  PubMed  Google Scholar 

  4. 4.

    Haas AN, Pannuti CM, Andrade AK, Escobar EC, Almeida ER, Costa FO, Cortelli JR, Cortelli SC, Rode SD, Pedrazzi V, Oppermann RV. Mouthwashes for the control of supragingival biofilm and gingivitis in orthodontic patients: evidence-based recommendations for clinicians. Braz Oral Res. 2014;28:1–8.

    Article  PubMed  Google Scholar 

  5. 5.

    De Paola L, Eshenaur Spolarich A. Safety and efficacy of antimicrobial mouthrinses in clinical practice. J Dent Hyg. 2007;81:117.

    Google Scholar 

  6. 6.

    Minah GE, DePaola LG, Overholser CD, Meiller TF, Niehaus C, Lamm RA, Ross NM, Dills SS. Effects of 6 months use of an antiseptic mouthrinse on supragingival dental plaque microflora. J Clin Periodontol. 1989;16:347–52.

    Article  PubMed  Google Scholar 

  7. 7.

    Kusy RP. A review of contemporary archwires: their properties and characteristics. Angle Orthod. 1997;67:197–207.

    PubMed  Google Scholar 

  8. 8.

    Askelund DR, Phule PP. The science and engineering of materials. 5th ed. London: Thomson Learning; 2006. p. 198.

    Google Scholar 

  9. 9.

    Campbell FC. Elements of metallurgy and engineering alloys. Materials Park: ASM International; 2008. p. 206.

    Google Scholar 

  10. 10.

    Alavi S, Barooti S, Borzabadi-Farahani A. An in vitro assessment of the mechanical characteristics of nickel-titanium orthodontic wires in fluoride solutions with different acidities. J Orthod Sci. 2015;4:52–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, Raza MR. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl. 2017;77:1261–74.

    Article  PubMed  Google Scholar 

  12. 12.

    Uter W, Amario-Hita JC, Balato A, Ballmer-Weber B, Bauer A, Belloni Fortina A, Bircher A, Chowdhury MMU, Cooper SM, Dugonik A, Gallo R, Giménez-Arnau A, Johansen JD, John SM, Kieć-Świerczyńska M, Kmecl T, Kręcisz B, Larese Filon F, Mahler V, Pesonen M, Rustemeyer T, Sadowska-Przytocka A, Sánchez-Perez J, Schliemann S, Schuttelaar ML, Simon D, Spiewak R, Valiukeviciene S, Weisshaar E, White IR, Wilkinson SM. European Surveillance System on Contact Allergies (ESSCA): results with the European baseline series, 2013/14. J Eur Acad Dermatol Venereol. 2017;31:1516–25.

    Article  PubMed  Google Scholar 

  13. 13.

    Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis. 2016;74:323–45.

    Article  PubMed  Google Scholar 

  14. 14.

    Katic V, Mandic V, Jezek D, Barsic G, Spalj S. Influence of various fluoride agents on working properties and surface characteristics of uncoated, rhodium coated and nitrified nickel-titanium orthodontic wires. Acta Odontol Scand. 2015;73:241–9.

    Article  PubMed  Google Scholar 

  15. 15.

    Igarashi K, Lee IK, Schachtele CF. Effect of dental plaque age and bacterial composition on the pH of artificial fissures in human volunteers. Caries Res. 1990;24:52–8.

    Article  PubMed  Google Scholar 

  16. 16.

    Katic V, Curkovic L, Bosnjak MU, Peros K, Mandic D, Spalj S. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings. Dent Mater J. 2017;36:149–56.

    Article  PubMed  Google Scholar 

  17. 17.

    Katic V, Curkovic L, Ujevic Bosnjak M, Spalj S. Determination of corrosion rate of orthodontic wires based on nickel–titanium alloy in artificial saliva. Materialwiss Werkst. 2014;45:99–105.

    Article  Google Scholar 

  18. 18.

    Arndt M, Brück A, Scully T, Jäger A, Bourauel C. Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions. J Mater Sci. 2005;40:3659–67.

    Article  Google Scholar 

  19. 19.

    Petoumeno E, Kislyuk M, Hoederath H, Keilig L, Bourauel C, Jäger A. Corrosion susceptibility and nickel release of nickel titanium wires during clinical application. J Orofac Orthop. 2008;69:411–23.

    Article  Google Scholar 

  20. 20.

    Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003;24:3585–92.

    Article  PubMed  Google Scholar 

  21. 21.

    Setcos JC, Babaei-Mahani A, Silvio LD, Mjör IA, Wilson NH. The safety of nickel containing dental alloys. Dent Mater. 2006;22:1163–8.

    Article  PubMed  Google Scholar 

  22. 22.

    Gursoy UK, Sokucu O, Uitto VJ, Aydin A, Demirer S, Toker H, Erdem O, Sayal A. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur J Orthod. 2007;29:555–8.

    Article  PubMed  Google Scholar 

  23. 23.

    Hosseinzadeh Nik T, Ghadirian H, Ahmadabadi MN, Shahhoseini T, Haj-Fathalian M. Effect of saliva on load-deflection characteristics of superelastic nickel-titanium orthodontic wires. J Dent (Tehran). 2012;9:171–9.

    Google Scholar 

  24. 24.

    Proffit WR, Fields HW. Contemporary orthodontics. 3th ed. St. Louis: Mosby Inc; 2000. p. 298.

    Google Scholar 

  25. 25.

    Hosseinzadeh Nik T, Hooshmand T, Farazdaghi H, Mehrabi A, Razavi ES. Effect of chlorhexidine-containing prophylactic agent on the surface characterization and frictional resistance between orthodontic brackets and archwires: an in vitro study. Prog Orthod. 2013;14:48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Zohdi H, Emami M, Shahverdi HR. Galvanic corrosion behavior of dental alloys. In: Valdez Salas B, Schorr M, editors. Environmental and industrial corrosion: practical and theoretical aspects. Rijeka: InTech; 2012. p. 157–68.

    Google Scholar 

  27. 27.

    Katic V, Otmacic Curkovic H, Semenski D, Barsic G, Marusic K, Spalj S. Influence of surface layer on mechanical and corrosion properties of nickel-titanium orthodontic wires. Angle Orthod. 2014;84:1041–8.

    Article  PubMed  Google Scholar 

  28. 28.

    Nalbantgil D, Ulkur F, Kardas G, Culha M. Evaluation of corrosion resistance and surface characteristics of orthodontic wires immersed in different mouthwashes. Biomed Mater Eng. 2016;27:539–49.

    PubMed  Google Scholar 

  29. 29.

    Walker MP, Ries D, Kula K, Ellis M, Fricke B. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment. Angle Orthod. 2007;77:342–8.

    Article  PubMed  Google Scholar 

  30. 30.

    Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. Am J Orthod Dentofac Orthop. 2005;127:662–9.

    Article  Google Scholar 

  31. 31.

    Lin J, Han S, Zhu J, Wang X, Chen Y, Vollrath O, Wang H, Mehl C. Influence of fluoride-containing acidic artificial saliva on the mechanical properties of Nickel-Titanium orthodontics wires. Indian J Dent Res. 2012;23:591–5.

    Article  PubMed  Google Scholar 

  32. 32.

    Srivastava K, Chandra PK, Kamat N. Effect of fluoride mouth rinses on various orthodontic archwire alloys tested by modified bending test: an in vitro study. Indian J Dent Res. 2012;23:433–4.

    Article  PubMed  Google Scholar 

  33. 33.

    Yokoyama K, Kaneko K, Moriyama K, Asaoka K, Sakai J, Nagumo M. Delayed fracture of Ni–Ti superelastic alloys in acidic and neutral fluoride solutions. J Biomed Mater Res A. 2004;69:105–13.

    Article  PubMed  Google Scholar 

  34. 34.

    Rerhrhaye W, Bahije L, El Mabrouk K, Zaoui F, Marzouk N. Degradation of the mechanical properties of orthodontic NiTi alloys in the oral environment: an in vitro study. Int Orthod. 2014;12:271–80.

    PubMed  Google Scholar 

  35. 35.

    Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J. Degradation in performance of orthodontic wires caused by hydrogen absorption during short-term immersion in 2.0% acidulated phosphate fluoride solution. Angle Orthod. 2004;74:487–95.

    PubMed  Google Scholar 

Download references


We would like to thank Goran Bosanac from Faculty of Food Technology and Biotechnology for his help in analysis.


This study was funded by Croatian Science Foundation-project “Immunological and regenerative implications of corrosion of dental materials in children and adolescents” (Grant Number IP-2014-09-7500).

Author information



Corresponding author

Correspondence to Stjepan Spalj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rincic Mlinaric, M., Karlovic, S., Ciganj, Z. et al. Oral antiseptics and nickel–titanium alloys: mechanical and chemical effects of interaction. Odontology 107, 150–157 (2019). https://doi.org/10.1007/s10266-018-0387-9

Download citation


  • Nickel
  • Titanium
  • Corrosion
  • Antiseptics
  • Orthodontics