Skip to main content

Advertisement

Log in

Effects of sulfuric and vinyl sulfonic acid etchants on bond strength of resin composite to polyetherketoneketone

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effects of etching with sulfuric acid (SA) and vinyl sulfonic acid (VSA) on the bond strength between a light-curing indirect resin composite and polyetherketoneketones (PEKK). PEKK specimens were ground with 600 silicon carbide papers, etched with 90% SA for 5 s (90-5 SA) or 95% VSA for 30 s (95-30 VSA), and then modified with a phosphate primer; afterward, a light-curing resin composite was veneered on the specimens. Two control groups were also prepared without etching (unetched/unprimed and unetched/primed). After 20,000 thermocycles in water at 4 and 60 °C, the shear bond strengths of the specimens were determined and subjected to a nonparametric (Steel–Dwass) test (α = 0.05, n = 8). The etched surfaces were observed by scanning electron microscopy (SEM) at 2000× magnification. Higher bond strengths were obtained when the PEKK surface was etched with 90-5 SA or 95-30 VSA (90-5 SA/unprimed 24.3 ± 4.3 MPa, 90-5 SA/primed 26.2 ± 3.2 MPa, 95-30 VSA/unprimed 23.7 ± 2.5 MPa, 95-30 VSA/primed 24.3 ± 4.1 MPa), and these values were not statistically different, whereas the two control groups exhibited significantly lower bond strengths (unetched/unprimed 12.2 ± 1.7 MPa, unetched/primed 9.5 ± 2.7 MPa). SEM observations revealed that 95-30 VSA led to a microporous (felt-like) surface, which was different from the surface structure etched with 90-5 SA. Etching the PEKK surface with SA or VSA significantly improved the bond strength between resin composite and PEKK in contrast with the application of the phosphate primer. Appropriate chemical etching could be a useful option when fabricating prostheses using PEKK-based materials and indirect resin composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonner WH. Aromatic polyketones and preparation thereof. United States patent no. 3065205; 1962.

  2. Rose JB, Staniland PA. Thermoplastic aromatic polyetherketones. United States patent no. 4320224; 1982.

  3. Fuhrmann G, Steiner M, Freitag-Wolf S, Kern M. Resin bonding to three types of polyaryletherketones (PAEKs)-durability and influence of surface conditioning. Dent Mater. 2014;30:357–63.

    Article  Google Scholar 

  4. Wimmer T, Huffmann AMS, Eichberger M, Schmidlin PR, Stawarczyk B. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: effect of specimen geometries, antagonist materials and test set-up configuration. Dent Mater. 2016;32:e127–36.

    Article  Google Scholar 

  5. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100B:1044–52.

    Article  Google Scholar 

  6. Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral Implantol. 2013;39:743–9.

    Article  PubMed  Google Scholar 

  7. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60:12–9.

    Article  Google Scholar 

  8. Santing HJ, Meijer HJA, Raghoebar GM, Özcan M. Fracture strength and failure mode of maxillary implant-supported provisional single crowns: a comparison of composite resin crowns fabricated directly over PEEK abutments and solid titanium abutments. Clin Implant Dent Relat Res. 2012;14:882–9.

    Article  PubMed  Google Scholar 

  9. Uhrenbacher J, Schmidlin PR, Keul C, Eichberger M, Roos M, Gernet W, Stawarczyk B. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. J Prosthet Dent. 2014;112:1489–97.

    Article  Google Scholar 

  10. Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, Schmidlin PR. Polyetheretherketone—a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater. 2013;101B:1209–16.

    Article  Google Scholar 

  11. Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, Schmidlin PR. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent. 2015;114:666–73.

    Article  PubMed  Google Scholar 

  12. Tannous F, Steiner M, Shahin R, Kern M. Retentive forces and fatigue resistance of thermoplastic resin clasps. Dent Mater. 2012;28:273–8.

    Article  PubMed  Google Scholar 

  13. Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketon (PEEK). Dent Mater. 2012;28:1280–3.

    Article  PubMed  Google Scholar 

  14. Rosentritt M, Preis V, Behr M, Sereno N, Kolbeck C. Shear bond strength between veneering composite and PEEK after different surface modifications. Clin Oral Investig. 2015;19:739–44.

    Article  PubMed  Google Scholar 

  15. Zhou L, Qian Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent Mater. 2014;30:e209-15.

    Article  PubMed  Google Scholar 

  16. Schmidlin PR, Eichberger M, Stawarczyk B. Glycine: a potential coupling agent to bond to helium plasma treated PEEK? Dent Mater. 2016;32:305–10.

    Article  PubMed  Google Scholar 

  17. Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CH, Fischer J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Mater. 2010;26:553–9.

    Article  Google Scholar 

  18. Sproesser O, Schmidlin PR, Uhrenbacher J, Roos M, Gernet W, Stawarczyk B. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements. J Adhes Dent. 2014;16:465–72.

    PubMed  Google Scholar 

  19. Hallmann L, Mehl A, Sereno N, Hämmerle CHF. The improvement of adhesive properties of PEEK through different pre-treatments. Appl Surf Sci. 2012;258:7213–8.

    Article  Google Scholar 

  20. Keul C, Liebermann A, Schmidlin PR, Roos M, Sener B, Stawarczyk B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent. 2014;16:383–92.

    PubMed  Google Scholar 

  21. Stawarczyk B, Jordan P, Schmidlin PR, Roos M, Eichberger M, Gernet W, Keul C. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent. 2014;112:1278–88.

    Article  PubMed  Google Scholar 

  22. Stawarczyk B, Silla M, Roos M, Eichberger M, Lümkemann N. Bonding behavior of polyetherketoneketone to methylmethacrylate- and dimethacrylate-based polymers. J Adhes Dent. 2017;19:331–8.

    PubMed  Google Scholar 

  23. Lee KS, Shin MS, Lee JY, Ryu JJ, Shin SW. Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials. J Adv Prosthodont. 2017;9:350–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tanaka T, Kamada K, Matsumura H, Atsuta M. A comparison of water temperatures for thermocycling of metal-bonded resin specimens. J Prosthet Dent. 1995;74:345–9.

    Article  PubMed  Google Scholar 

  25. Stawarczyk B, Taufall S, Roos M, Schmidlin PR, Lümkemann N. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters. Clin Oral Investig. 2018;22:763–71.

    Article  PubMed  Google Scholar 

  26. Stawarczyk B, Bähr N, Beuer F, Wimmer T, Eichberger M, Gernet W, Jahn D, Schmidlin PR. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin Oral Investig. 2014;18:163–70.

    Article  PubMed  Google Scholar 

  27. Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of veneering resins to PEEK: impact of different adhesives. Dent Mater J. 2013;32:441–8.

    Article  PubMed  Google Scholar 

  28. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci. 2004;229:95–100.

    Article  Google Scholar 

  29. Shu S, Kobayashi H, Okubo M, Sabarudin A, Butsugan M, Umemura T. Chemical anchoring of lauryl methacrylate-based reversed phase monolith to 1/16″ o.d. polyetheretherketone tubing. J Chromatogr A. 2012;1242:59–66.

    Article  PubMed  Google Scholar 

  30. Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EYW, Yan CH, Yeung KWK, Chu PK. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34:9264–77.

    Article  PubMed  Google Scholar 

  31. Taira Y, Matsumura H, Yoshida K, Tanaka T, Atsuta M. Influence of surface oxidation of titanium on adhesion. J Dent. 1998;26:69–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohsuke Taira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakihara, M., Taira, Y. & Sawase, T. Effects of sulfuric and vinyl sulfonic acid etchants on bond strength of resin composite to polyetherketoneketone. Odontology 107, 158–164 (2019). https://doi.org/10.1007/s10266-018-0375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-018-0375-0

Keywords

Navigation