, Volume 106, Issue 3, pp 306–315 | Cite as

Clinical usability of aspartate aminotransferase to evaluate the prognosis of periodontal regeneration therapies: prospective, longitudinal study

  • Yohei Nakayama
  • Miyuki Takei-Obi
  • Izumi Toyoshima-Matsumura
  • Mai Tsutamori
  • Ayako Kato
  • Chiharu Okano
  • Masaru Mezawa
  • Yorimasa Ogata
Original Article


To evaluate the degree of periodontal tissue destruction, aspartate aminotransferase (AST) levels in the gingival crevicular fluid (GCF) are utilized as a predictor of periodontal therapy. We have previously shown that the usefulness of AST activities [periodontal tissue monitor (PTM) values] using a PTM-kit to evaluate the effects of initial periodontal therapy and periodontal regeneration therapy by enamel matrix derivative (EMD). This prospective, longitudinal study was conducted using 38 healthy and 80 periodontitis sites with probing depth (PD) of 5–10 mm for guided tissue regeneration (GTR) and EMD from 36 patients. GCF samples were used to evaluate PTM values at base line (BL) and after 6 months of surgeries (re-evaluation: RE), and periodontal examinations were performed concurrently. PTM values at BL were statistically improved at RE, accompanied by the improvement of periodontal parameters in both groups. PTM values and PD, and the clinical attachment level (CAL) showed high correlations. PD, CAL and bleeding on probing (BOP) were highly correlated with PTM values in both groups, whereas only PD showed a significant correlation with PTM values at RE in the GTR group. Change in the amounts of PD, CAL and BOP between BL and RE in both groups showed no correlation with PTM values. In the negative PTM value sites at BL in EMD group, the mean PD was significantly reduced at RE compared with positive PTM sites at BL. PTM values are able to be utilized as the biochemical predictor of prognosis after periodontal regeneration therapy.


Aspartate aminotransferase Periodontitis Periodontal regeneration therapy Predictor 



The authors report no competing interests. This work was supported in part by the Grant-in-Aid for Scientific Research (Young Scientists (B); No. 25862059, Scientific Research (C); No.  17K11994) from the Ministry of Education, Science, Sports and Culture of Japan, Nihon University Multidisciplinary Research Grant for 2014 and 2017, Nihon University School of Dentistry at Matsudo Young Investigator Seed Funding Grant for 2014, and a grant of Strategic Research Base Development Program for Private Universities from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT), 2010-2014 (S1001024).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study received ethical approval from the ethics committee of Nihon University School of Dentistry at Matsudo, Chiba, Japan [EC12-23]. This is part of our ongoing study to investigate the clinical usefulness of PTM kits for evaluation of post-periodontal surgeries and prognosis after periodontal regeneration therapies, such as GTR and EMD.


  1. 1.
    Smith AJ, Alexander M, Mackenzie D, Lennon A, Riggio MP, MacFarlane TW. Microbial factors and gingival crevicular fluid aspartate aminotransferase levels. A cross-sectional study. J Clin Periodontol. 1998;25:334–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Huynh C, Roch-Arveiller M, Meyer J, Giroud JP. Gingival crevicular fluid of patients with gingivitis or periodontal disease: evaluation of elastase-alpha 1 proteinase inhibitor complex. J Clin Periodontol. 1992;19:187–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Imamura K, Takayama S, Saito A, Inoue E, Nakayama Y, Ogata Y, Shirakawa S, Nagano T, Gomi K, Morozumi T, Akiishi K, Watanabe K, Yoshie H. Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque. J Microbiological Methods. 2015;117:4–10.CrossRefGoogle Scholar
  4. 4.
    Seymour GJ, Gemmell E, Reinhardt RA, Eastcott J, Taubman MA. Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms. J Periodontal Res. 1993;28:478–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Socransky SS, Haffajee AD, Goodson JM, Lindhe J. New concepts of destructive periodontal disease. J Clin Periodontol. 1984;11:21–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Chambers DA, Crawford JM, Mukherjee S, Cohen RL. Aspartate aminotransferase increases in crevicular fluid during experimental periodontitis in beagle dogs. J Periodontol. 1984;55:526–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Persson GR, DeRouen TA, Page RC. Relationship between levels of aspartate aminotransferase in gingival crevicular fluid and gingival inflammation. J Periodontal Res. 1990;25:17–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Chambers DA, Imrey PB, Cohen RL, Crawford JM, Alves ME, McSwiggin TA. A longitudinal study of aspartate aminotransferase in human gingival crevicular fluid. J Periodontal Res. 1991;26:65–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Imrey PB, Crawford JM, Cohen RL, Alves ME, McSwiggin TA, Chambers DA. A cross-sectional analysis of aspartate aminotransferase in human gingival crevicular fluid. J Periodontal Res. 1991;26:75–84.CrossRefPubMedGoogle Scholar
  10. 10.
    McCulloch CA. Host enzymes in gingival crevicular fluid as diagnostic indicators of periodontitis. J Clin Periodontol. 1994;21:497–506.CrossRefPubMedGoogle Scholar
  11. 11.
    Ivić-Kardum M, Aurer A, Haban V, Aurer-Kozelj J, Szirovicza L. Aspartat aminotransferase-a marker of periodontal disease activity. Coll Antropol. 1999;23:111–6.PubMedGoogle Scholar
  12. 12.
    Shimada K, Mizuno T, Uchida T, Kato T, Ito K, Murai S. Relationship between levels of aspartate aminotransferase in gingival crevicular fluid and conventional measures of periodontal status assessed using PocketWatch: a cross-sectional study. J Oral Sci. 1999;41:35–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Tsalikis L, Malaka E, Pavlitou E, Konstantinidis A. Aspartate aminotransferase levels in gingival crevicular fluid before and after initial periodontal treatment. J Int Acad Periodontol. 2001;3:68–74.PubMedGoogle Scholar
  14. 14.
    Wong MY, Lu CL, Liu CM, Hou LT, Chang W. Clinical response of localized recurrent periodontitis treated with scaling, root planing, and tetracycline fiber. J Formos Med Assoc. 1998;97:490–7.PubMedGoogle Scholar
  15. 15.
    Knöfler G, Purschwitz R, Jentsch H, Birkenmeier G, Schmidt H. Gingival crevicular fluid levels of aspartate aminotransferase and alpha 2-macroglobulin before and after topical application of metronidazole or scaling and root planing. Quintessence Int. 2008;39:381–9.PubMedGoogle Scholar
  16. 16.
    Shimada K, Mizuno T, Ohshio K, Kamaga M, Murai S, Ito K. Analysis of aspartate aminotransferase in gingival crevicular fluid assessed by using PocketWatch: a longitudinal study with initial therapy. J Clin Periodontol. 2000;11:819–23.CrossRefGoogle Scholar
  17. 17.
    Takei M, Nakayama Y, Toyoshima I, Hiromatsu Y, Ogata Y. Comparison of the levels of aspartate aminotransferase and clinical parameters pre- and post- initial therapy and periodontal surgery. J Jpn Soc Periodontal. 2014;56:390–8.CrossRefGoogle Scholar
  18. 18.
    Oringer RJ, Howell TH, Nevins ML, Reasner DS, Davis GH, Sekler J, Fiorellini JP. Relationship between crevicular aspartate aminotransferase levels and periodontal disease progression. J Periodontol. 2001;72:17–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Glavind L, Löe H. Errors in the clinical assessment of periodontal destruction. J Periodontal Res. 1967;23:180–4.CrossRefGoogle Scholar
  20. 20.
    Kamma JJ, Nakou M, Persson RG. Association of early onset periodontitis microbiota with aspartate aminotransferase activity in gingival crevicular fluid. J Clin Periodontol. 2001;28:1096–105.CrossRefPubMedGoogle Scholar
  21. 21.
    Sculean A, Donos N, Windisch P, Brecx M, Gera I, Reich E, Karring T. Healing of human intrabony defects following treatment with enamel matrix proteins or guided tissue regeneration. J Periodontal Res. 1999;34:310–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Cortellini P, Prato GP, Tonetti MS. The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol. 1995;66:261–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Cortellini P, Prato GP, Tonetti MS. The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restor Dent. 1999;19:589–99.Google Scholar
  24. 24.
    Cortellini P, Tonetti MS, Lang NP, Suvan JE, Zucchelli G, Vangsted T, Silvestri M, Rossi R, McClain P, Fonzar A, Dubravec D, Adriaens P. The simplified papilla preservation flap in the regenerative treatment of deep intrabony defects: clinical outcomes and postoperative morbidity. J Periodontol. 2001;72:1702–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Guida L, Annunziata M, Belardo S, Farina R, Scabbia A, Trombelli L. Effect of autogenous cortical bone particulate in conjunction with enamel matrix derivative in the treatment of periodontal intraosseous defects. J Periodontol. 2007;78:231–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Yilmaz S, Cakar G, Yildirim B, Sculean A. Healing of two and three wall intrabony periodontal defects following treatment with an enamel matrix derivative combined with autogenous bone. J Clin Periodontol. 2010;37:544–50.CrossRefPubMedGoogle Scholar
  27. 27.
    De Leonardis D, Paolantonio M. Enamel matrix derivative, alone or associated with a synthetic bone substitute, in the treatment of 1- to 2-wall periodontal defects. J Periodontol. 2013;84:444–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Tonetti MS, Lang NP, Cortellini P, Suvan JE, Adriaens P, Dubravec D, Fonzar A, Fourmousis I, Mayfield L, Rossi R, Silvestri M, Tiedemann C, Topoll H, Vangsted T, Wallkamm B. Enamel matrix proteins in the regenerative therapy of deep intrabony defects. J Clin Periodontol. 2002;29:317–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Siciliano VI, Andreuccetti G, Siciliano AI, Blasi A, Sculean A, Salvi GE. Clinical outcomes after treatment of non-contained intrabony defects with enamel matrix derivative or guided tissue regeneration: a 12-month randomized controlled clinical trial. J Periodontol. 2011;82:62–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Wei FL, Wang CL, Liu DX, Guo J, Ke HF, Guo XX. Changes of aspartate aminotransferase and alkaline phosphatase activities in gingival crevicular fluid during rapid palatal expansion. Shanghai Kou Qiang Yi Xue. 2007;16:168–71 (in Chinese).PubMedGoogle Scholar
  31. 31.
    Wong MY, Lu CL, Liu CM, Hou LT, Chang WK. Clinical response of localized recurrent periodontitis treated with scaling, root planing, and tetracycline fiber. J Formos Med Assoc. 1998;97:490–7.PubMedGoogle Scholar
  32. 32.
    Nowzari H, Matian F, Slots J. Periodontal pathogens on polytetrafluoroethylene membrane for guided tissue regeneration inhibits healing. J Clin Periodontol. 1998;22:469–74.CrossRefGoogle Scholar
  33. 33.
    Vergara JA, Quiñones CR, Nasjleti CE, Caffesse RG. Vascular response to guided tissue regeneration procedures using nonresorbable and bioabsorbable membranes in dogs. J Periodontol. 1997;68:217–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Sakoda K, Nakajima Y, Noguchi K. Enamel matrix derivative induces production of vascular endothelial cell growth factor in human gingival fibroblasts. Eur J Oral Sci. 2012;6:513–9.CrossRefGoogle Scholar
  35. 35.
    Bertl K, An N, Bruckmann C, Dard M, Andrukhov O, Matejka M, Rausch-Fan X. Effects of enamel matrix derivative on proliferation/viability, migration, and expression of angiogenic factor and adhesion molecules in endothelial cells in vitro. J Periodontol. 2009;80:1622–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Kasaj A, Meister J, Lehmann K, Stratul SI, Schlee M, Stein JM, Willershausen B, Schmidt M. The influence of enamel matrix derivative on the angiogenic activity of primary endothelial cells. J Periodontal Res. 2012;47:479–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Lei Q, Chen J, Jiang J, Fu X, Lin H, Cai Z. Comparison of soft tissue healing around implants in beagle dogs: flap surgery versus flapless surgery. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:e21–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Lossdorfer S, Sun M, Gotz W, Dard M, Jager A. Enamel matrix derivative promotes human periodontal ligament cell differentiation and osteoprotegerin production in vitro. J Dent Res. 2007;86:980–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Miron RJ, Dard M, Weinreb M. Enamel matrix derivative, inflammation and soft tissue wound healing. J Periodont Res. 2015;50:555–69.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2017

Authors and Affiliations

  • Yohei Nakayama
    • 1
    • 2
  • Miyuki Takei-Obi
    • 1
  • Izumi Toyoshima-Matsumura
    • 1
  • Mai Tsutamori
    • 1
  • Ayako Kato
    • 1
    • 2
  • Chiharu Okano
    • 1
  • Masaru Mezawa
    • 1
    • 2
  • Yorimasa Ogata
    • 1
    • 2
  1. 1.Department of PeriodontologyNihon University School of Dentistry at MatsudoMatsudoJapan
  2. 2.Research Institute of Oral ScienceNihon University School of Dentistry at MatsudoMatsudoJapan

Personalised recommendations