Skip to main content

Advertisement

Log in

Centipeda periodontii in human periodontitis

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study assessed the subgingival occurrence of the flagellated, Gram-negative, anaerobic rod Centipeda periodontii in chronic periodontitis and periodontal health/gingivitis with species-specific nucleic acid probes, and evaluated the in vitro resistance of subgingival isolates to therapeutic levels of amoxicillin, metronidazole, and doxycycline. Subgingival plaque biofilm specimens from 307 adults with chronic periodontitis, and 48 adults with periodontal health/localized gingivitis, were evaluated with digoxigenin-labeled, whole-chromosomal, DNA probes to C. periodontii ATCC 35019 possessing a 104 cell detection threshold. Fifty-two C. periodontii subgingival culture isolates were assessed on antibiotic-supplemented enriched Brucella blood agar for in vitro resistance to either amoxicillin at 2 µg/ml, metronidazole at 4 µg/ml, or doxycycline at 2 µg/ml. A significantly greater subgingival occurrence of C. periodontii was found in chronic periodontitis subjects as compared to individuals with periodontal health/gingivitis (13.4 vs. 0 %, P < 0.003), although high subgingival counts of the organism (≥106 cells) were rarely detected (1.3 % of chronic periodontitis subjects). In vitro resistance was not found to amoxicillin or metronidazole, and to doxycycline in only 2 (3.9 %) of the 52 C. periodontii clinical isolates studied. These findings indicate that C. periodontii is not a major constituent of the subgingival microbiome in chronic periodontitis or periodontal health/gingivitis. The potential contribution of C. periodontii to periodontal breakdown in the few chronic periodontitis subjects who yielded high subgingival levels of the organism remains to be delineated. C. periodontii clinical isolates were susceptible in vitro to therapeutic concentrations of three antibiotics frequently used in treatment of human periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lai C-H, Males BM, Dougherty PA, Berthold P, Listgarten MA. Centipeda periodontii gen. nov., sp. nov. from human periodontal lesions. Int J Syst Bacteriol. 1983;33:628–35.

    Article  Google Scholar 

  2. Tanner A, Lai C-H, Maiden M. Characteristics of oral Gram-negative species. In: Slots J, Taubman MA, editors. Contemporary oral microbiology and immunology. St. Louis: Mosby Year Book; 1992. p. 299–341.

    Google Scholar 

  3. Males BM, Berthold P, Dougherty PA, Listgarten MA. Helical flagellation in Centipeda periodontii, a Gram-negative, anaerobic bacillus from periodontitis lesions. J Gen Microbiol. 1984;130:185–91.

    PubMed  Google Scholar 

  4. Berthold P, Males BM, Dougherty PA, Lai C-H, Listgarten MA. Ultrastructure of the flagellar basal body complex of Centipeda periodontii. J Ultrastruct Mol Struct Res. 1988;99:150–5.

    Article  PubMed  Google Scholar 

  5. Sawada S, Kokeguchi S, Nishimura F, Takashiba S, Murayama Y. Phylogenetic characterization of Centipeda periodontii, Selenomonas sputigena and Selenomonas species by 16S rRNA gene sequence analysis. Microbios. 1999;98:133–40.

    PubMed  Google Scholar 

  6. Siqueira JF Jr, Rôças IN. Nested PCR detection of Centipeda periodontii in primary endodontic infections. J Endod. 2004;30:135–7.

    Article  PubMed  Google Scholar 

  7. Leung WK, Theilade E, Comfort MB, Lim PL. Microbiology of the pericoronal pouch in mandibular third molar pericoronitis. Oral Microbiol Immunol. 1993;8:306–12.

    Article  PubMed  Google Scholar 

  8. Tamura N, Ochi M, Miyakawa H, Nakazawa F. Analysis of bacterial flora associated with peri-implantitis using obligate anaerobic culture technique and 16S rDNA gene sequence. Int J Oral Maxillofac Implants. 2013;28:1521–9.

    Article  PubMed  Google Scholar 

  9. Tyrrell KL, Citron DM, Warren YA, Nachnani S, Goldstein EJ. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe. 2003;9:243–6.

    Article  PubMed  Google Scholar 

  10. Moore WEC, Holdeman LV, Cato EP, Smibert RM, Burmeister JA, Palcanis KG, Ranney RR. Comparative bacteriology of juvenile periodontitis. Infect Immun. 1985;48:507–19.

    PubMed Central  PubMed  Google Scholar 

  11. Chan Y, Chien R. Identification and analyses of periodontal pathogens in Taiwan by microbiological tests. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1994;27:59–69.

    PubMed  Google Scholar 

  12. Dahlén G, Leonhardt A. A new checkerboard panel for testing bacterial markers in periodontal disease. Oral Microbiol Immunol. 2006;21:6–11.

    Article  PubMed  Google Scholar 

  13. Sawada S, Kokeguchi S, Takashiba S, Murayama Y. Development of 16S rDNA-based PCR assay for detecting Centipeda periodontii and Selenomonas sputigena. Lett Appl Microbiol. 2000;30:423–6.

    Article  PubMed  Google Scholar 

  14. Mayanagi G, Sato T, Shimauchi H, Takahashi N. Detection frequency of periodontitis-associated bacteria by polymerase chain reaction in subgingival and supragingival plaque of periodontitis and healthy subjects. Oral Microbiol Immunol. 2004;19:379–85.

    Article  PubMed  Google Scholar 

  15. Armitage GC. Periodontal diagnoses and classification of periodontal diseases. Periodontol. 2000;2004(34):9–21.

    Google Scholar 

  16. Rauch CA, Nichols JH. Laboratory accreditation and inspection. Clin Lab Med. 2007;27:845–58.

    Article  PubMed  Google Scholar 

  17. Lotufo RF, Flynn J, Chen C, Slots J. Molecular detection of Bacteroides forsythus in human periodontitis. Oral Microbiol Immunol. 1994;9:154–60.

    Article  PubMed  Google Scholar 

  18. Flynn MJ, Li G, Slots J. Mitsuokella dentalis in human periodontitis. Oral Microbiol Immunol. 1994;9:248–50.

    Article  PubMed  Google Scholar 

  19. Rams TE, Dujardin S, Sautter JD, Degener JE, van Winkelhoff AJ. Spiramycin resistance in human periodontitis microbiota. Anaerobe. 2011;17:201–5.

    Article  PubMed  Google Scholar 

  20. van Winkelhoff AJ, Herrera Gonzales D, Winkel EG, Dellemijn-Kippuw N, Vandenbroucke-Grauls CM, Sanz M. Antimicrobial resistance in the subgingival microflora in patients with adult periodontitis. A comparison between the Netherlands and Spain. J Clin Periodontol. 2000;27:79–86.

    Article  PubMed  Google Scholar 

  21. Rams TE, Degener JE, van Winkelhoff AJ. Antibiotic resistance in human chronic periodontitis microbiota. J Periodontol. 2014;85:160–9.

    Article  PubMed  Google Scholar 

  22. Bergan T, Bruun JN, Digranes A, Lingaas E, Melby KK, Sander J. Susceptibility testing of bacteria and fungi. Report from “the Norwegian Working Group on Antibiotics”. Scand J Infect Dis Suppl. 1997;103:1–36.

    PubMed  Google Scholar 

  23. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7:1016–25.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol. 2000;2005(38):135–87.

    Google Scholar 

  26. Lai C-H, Listgarten MA, Chan Y, Lai L-T, Suwa T, Koh J. Serum antibodies to Centipeda periodontii in human periodontal disease. J Dent Res. 1992;71:244 (Special Issue).

    Google Scholar 

  27. Kokeguchi S, Tsutsui O, Kato K, Matsumura T. Isolation and characterization of lipopolysaccharide from Centipeda periodontii ATCC 35019. Oral Microbiol Immunol. 1990;5:108–12.

    Article  PubMed  Google Scholar 

  28. Shenker BJ, Berthold P, Dougherty P, Porter KK. Immunosuppressive effects of Centipeda periodontii: selective cytotoxicity for lymphocytes and monocytes. Infect Immun. 1987;55:2332–40.

    PubMed Central  PubMed  Google Scholar 

  29. Persson S, Edlund M-B, Claesson R, Carlsson J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol. 1990;5:195–201.

    Article  PubMed  Google Scholar 

  30. Carlsson J, Larsen LT, Edlund M-B. Peptostreptococcus micros has a uniquely high capacity to form hydrogen sulfide from glutathione. Oral Microbiol Immunol. 1993;8:42–5.

    Article  PubMed  Google Scholar 

  31. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, twenty-second informational supplement. CLSI document M100-S22. Wayne: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

Download references

Acknowledgments

The authors thank Diane Feik for her laboratory expertise and assistance. Support for this research was in part provided by funds from the Paul H. Keyes Term Professorship in Periodontology, which was held during 2003–2013 by Thomas E. Rams at Temple University School of Dentistry.

Conflict of interest

All authors declare that they have no conflicts of interest relative to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Rams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rams, T.E., Hawley, C.E., Whitaker, E.J. et al. Centipeda periodontii in human periodontitis. Odontology 103, 286–291 (2015). https://doi.org/10.1007/s10266-014-0166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-014-0166-1

Keywords

Navigation