Skip to main content

Advertisement

Log in

TGF-β in dentin matrix extract induces osteoclastogenesis in vitro

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Previously, we have demonstrated that the extracellular matrix from dentin affects osteoclastic activity in co-culture between osteoclast and osteoblast-rich fraction from mouse marrow cells. In the present study, we aimed to investigate the mechanisms of dentin matrix extract-induced osteoclastogenesis in mouse bone marrow macrophages (BMMs). Dentin proteins were extracted from bovine incisor root dentin using 0.6 M HCl. BMMs were cultured in α-MEM containing macrophage colony-stimulating factor/receptor activator of nuclear factor kappa-B ligand in the presence or absence of dentin matrix extract. Tartrate-resistant acid phosphatase (TRAP)-positive cell number, total TRAP activity, and the mRNA levels of osteoclast-related genes, assayed by real-time RT-PCR, were determined as markers of osteoclastogenesis. A neutralizing antibody against transforming growth factor-β1 (TGF-β1), SB431542, a TGF-β receptor inhibitor, and ELISA were used to determine the role of TGF-β1. We observed increases in TRAP-positive cell number, TRAP activity, and the mRNA levels of osteoclast-related genes of BMMs cultured with dentin extract. The use of a neutralizing antibody against TGF-β1 or SB431542 inhibited the inductive effect of dentin extract, suggesting TGF-β1 involvement. The addition of exogenous TGF-β1, but not bone morphogenic protein-2, also increased osteoclastogenesis, corresponding to the ELISA determination of TGF-β1 in the dentin extract. In conclusion, our results indicate that proteins from dentin matrix have an inductive effect in osteoclastogenesis, which is mediated, in part, by TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boyde A, Ali NN, Jones SJ. Resorption of dentine by isolated osteoclasts in vitro. Br Dent J. 1984;156(6):216–20.

    Article  PubMed  Google Scholar 

  2. Sasaki T. Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption. Microsc Res Tech. 2003;61(6):483–95.

    Article  PubMed  Google Scholar 

  3. Sasaki T, Motegi N, Suzuki H, Watanabe C, Tadokoro K, Yanagisawa T, et al. Dentin resorption mediated by odontoclasts in physiological root resorption of human deciduous teeth. Am J Anat. 1988;183(4):303–15.

    Article  PubMed  Google Scholar 

  4. Butler WT, Ritchie H. The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol. 1995;39(1):169–79.

    PubMed  Google Scholar 

  5. Veis A. Dentin composition. In: Lazzari E, editor. Handbook of experimental aspects of oral biochemistry. Florida: CRC Press, Inc; 1983. p. 71–83.

    Google Scholar 

  6. Ritchie HH, Hou H, Veis A, Butler WT. Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem. 1994;269(5):3698–702.

    PubMed  Google Scholar 

  7. MacDougall M, Zeichner-David M, Slavkin HC. Production and characterization of antibodies against murine dentine phosphoprotein. Biochem J. 1985;232(2):493–500.

    PubMed Central  PubMed  Google Scholar 

  8. Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res. 1990;5(7):717–23.

    Article  PubMed  Google Scholar 

  9. Russo LG, Maharajan P, Maharajan V. Basic fibroblast growth factor (FGF-2) in mouse tooth morphogenesis. Growth Factors (Chur, Switzerland). 1998;15(2):125–33.

    Article  Google Scholar 

  10. Thomadakis G, Ramoshebi LN, Crooks J, Rueger DC, Ripamonti U. Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur J Oral Sci. 1999;107(5):368–77.

    Article  PubMed  Google Scholar 

  11. Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science. 1997;276(5310):266–9.

    Article  PubMed  Google Scholar 

  12. Lara VS, Figueiredo F, da Silva TA, Cunha FQ. Dentin-induced in vivo inflammatory response and in vitro activation of murine macrophages. J Dent Res. 2003;82(6):460–5.

    Article  PubMed  Google Scholar 

  13. Ogata Y, Niisato N, Moriwaki K, Yokota Y, Furuyama S, Sugiya H. Cementum, root dentin and bone extracts stimulate chemotactic behavior in cells from periodontal tissue. Comp Biochem Physiol B: Biochem Mol Biol. 1997;116(3):359–65.

    Article  Google Scholar 

  14. Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, et al. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell. 2003;14(1):173–89.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Silva TA, Lara VS, Silva JS, Garlet GP, Butler WT, Cunha FQ. Dentin sialoprotein and phosphoprotein induce neutrophil recruitment: a mechanism dependent on IL-1beta, TNF-beta, and CXC chemokines. Calcif Tissue Int. 2004;74(6):532–41.

    Article  PubMed  Google Scholar 

  16. Silva TA, Lara VS, Silva JS, Oliveira SH, Butler WT, Cunha FQ. Macrophages and mast cells control the neutrophil migration induced by dentin proteins. J Dent Res. 2005;84(1):79–83.

    Article  PubMed  Google Scholar 

  17. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone. 2000;27(4):479–86.

    Article  PubMed  Google Scholar 

  18. Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD. Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res. 2006;21(9):1350–8.

    Article  PubMed  Google Scholar 

  19. Kawaguchi H, Chikazu D, Nakamura K, Kumegawa M, Hakeda Y. Direct and indirect actions of fibroblast growth factor 2 on osteoclastic bone resorption in cultures. J Bone Miner Res. 2000;15(3):466–73.

    Article  PubMed  Google Scholar 

  20. D’Souza RN, Flanders K, Butler WT. Colocalization of TGF-beta 1 and extracellular matrix proteins during rat tooth development. Proc Finn Dent Soc. 1992;88(Suppl 1):419–26.

    PubMed  Google Scholar 

  21. Vaahtokari A, Vainio S, Thesleff I. Associations between transforming growth factor beta 1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development. 1991;113(3):985–94.

    PubMed  Google Scholar 

  22. Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor-beta isoforms 1–3 in human and rabbit dentine matrices. Arch Oral Biol. 1997;42(3):219–23.

    Article  PubMed  Google Scholar 

  23. Magloire H, Romeas A, Melin M, Couble ML, Bleicher F, Farges JC. Molecular regulation of odontoblast activity under dentin injury. Adv Dent Res. 2001;15:46–50.

    Article  PubMed  Google Scholar 

  24. Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F. Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res. 2000;79(9):1689–96.

    Article  PubMed  Google Scholar 

  25. DenBesten PK, Machule D, Gallagher R, Marshall GW Jr, Mathews C, Filvaroff E. The effect of TGF-beta 2 on dentin apposition and hardness in transgenic mice. Adv Dent Res. 2001;15:39–41.

    Article  PubMed  Google Scholar 

  26. Hattersley G, Chambers TJ. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function. J Bone Miner Res. 1991;6(2):165–72.

    Article  PubMed  Google Scholar 

  27. Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ. A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci. 2000;113(Pt 13):2445–53.

    PubMed  Google Scholar 

  28. Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, et al. Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem. 2003;278(45):44975–87.

    Article  PubMed  Google Scholar 

  29. Quinn JM, Itoh K, Udagawa N, Hausler K, Yasuda H, Shima N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res. 2001;16(10):1787–94.

    Article  PubMed  Google Scholar 

  30. Sriarj W, Aoki K, Ohya K, Takagi Y, Shimokawa H. Bovine dentine organic matrix down-regulates osteoclast activity. J Bone Miner Metab. 2009;27(3):315–23.

    Article  PubMed  Google Scholar 

  31. Takagi Y, Veis A. Isolation of phosphophoryn from human dentin organic matrix. Calcif Tissue Int. 1984;36(3):259–65.

    Article  PubMed  Google Scholar 

  32. Grcevic D, Lukic IK, Kovacic N, Ivcevic S, Katavic V, Marusic A. Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clin Exp Immunol. 2006;146(1):146–58.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Akatsu T, Tamura T, Takahashi N, Udagawa N, Tanaka S, Sasaki T, et al. Preparation and characterization of a mouse osteoclast-like multinucleated cell population. J Bone Miner Res. 1992;7(11):1297–306.

    Article  PubMed  Google Scholar 

  34. Nakasato YR, Janckila AJ, Halleen JM, Vaananen HK, Walton SP, Yam LT. Clinical significance of immunoassays for type-5 tartrate-resistant acid phosphatase. Clin Chem. 1999;45(12):2150–7.

    PubMed  Google Scholar 

  35. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004;23(3):552–63.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Shen L, Smith JM, Shen Z, Eriksson M, Sentman C, Wira CR. Inhibition of human neutrophil degranulation by transforming growth factor-beta1. Clin Exp Immunol. 2007;149(1):155–61.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  PubMed  Google Scholar 

  38. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95(7):3597–602.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA. 2000;97(4):1566–71.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Yan T, Riggs BL, Boyle WJ, Khosla S. Regulation of osteoclastogenesis and RANK expression by TGF-beta1. J Cell Biochem. 2001;83(2):320–5.

    Article  PubMed  Google Scholar 

  41. Koseki T, Gao Y, Okahashi N, Murase Y, Tsujisawa T, Sato T, et al. Role of TGF-beta family in osteoclastogenesis induced by RANKL. Cell Signal. 2002;14(1):31–6.

    Article  PubMed  Google Scholar 

  42. Jensen ED, Pham L, Billington CJ Jr, Espe K, Carlson AE, Westendorf JJ, et al. Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem. 2010;109(4):672–82.

    PubMed Central  PubMed  Google Scholar 

  43. Cowan CM, Aalami OO, Shi YY, Chou YF, Mari C, Thomas R, et al. Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover. Tissue Eng. 2005;11(3–4):645–58.

    Article  PubMed  Google Scholar 

  44. Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res. 2011;26(7):1447–56.

    Article  PubMed  Google Scholar 

  45. Fox SW, Evans KE, Lovibond AC. Transforming growth factor-beta enables NFATc1 expression during osteoclastogenesis. Biochem Biophys Res Commun. 2008;366(1):123–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (20592392) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and the Chulalongkorn University Centenary Academic Development Project (to WS), Thailand.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannakorn Sriarj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriarj, W., Aoki, K., Ohya, K. et al. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro. Odontology 103, 9–18 (2015). https://doi.org/10.1007/s10266-013-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-013-0140-3

Keywords

Navigation