Skip to main content
Log in

Fatigue resistance of rotary instruments manufactured using different nickel–titanium alloys: a comparative study

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether cyclic fatigue resistance is increased for Controlled Memory (CM) Nickel–Titanium (NiTi) instruments, compared to instruments produced using traditional NiTi and instruments produced using M-Wire alloy. Two groups of NiTi endodontic instruments consisting of identical instrument sizes (constant 0.06 taper and 0.25 tip diameter and constant 0.04 taper and 0.40 tip diameter) were tested: group A compared Hyflex™ CM, Vortex ™ and ProFile ™ size 25 and 0.06 taper and group B compared Hyflex™ CM, Vortex™ and ProFile™ size 40 and 0.04 taper. 10 files from each different subgroup were tested for cyclic fatigue resistance. Mean and standard deviations of the Number of Cycles to Failure (NCF) were calculated for each group and data were statistically analysed (p < 0.05). Hyflex™ CM instruments, size 25 and 0.06 taper, and size 40 and 0.04 taper, showed a significant increase in the mean number of cycles to failure when compared with size 25 and 0.06 taper Vortex™ and ProFile™. No statistically significant difference (p > 0.05) was noted between Vortex™ and ProFile™ in the tested sizes. The new manufacturing process involving memory shape heat treatment produced new NiTi rotary files (Hyflex™ CM) significantly more resistant to fatigue than instruments produced with other proprietary methods of treatment (Vortex™) and with the traditional NiTi grinding process (ProFile™).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson SA. An overview of nickel–titanium alloys used in dentistry. Int Endod J. 2000;33:297–310.

    Article  PubMed  Google Scholar 

  2. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006;32:1031–43.

    Article  PubMed  Google Scholar 

  3. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel–titanium rotary instruments. J Endod. 2009;35:1469–76.

    Article  PubMed  Google Scholar 

  4. Sattapan B, Nervo GJ, Palamara JEA, Messer HH. Defects in rotary nickel–titanium files after clinical use. J Endod. 2000;26:161–5.

    Article  PubMed  Google Scholar 

  5. Shen Y, Cheung GS, Peng B, Haapasalo M. Defects in nickel–titanium instruments after clinical use. Part 2: fractographic analysis of fractured surface in a cohort study. J Endod. 2009;35:133–6.

    Article  PubMed  Google Scholar 

  6. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel–titanium instruments after clinical use. J Endod. 2004;30:722–5.

    Article  PubMed  Google Scholar 

  7. Cheung GS, Darvell BW. Fatigue testing of a NiTi rotary instrument. Part 2: fractographic analysis. Int Endod J. 2007;40:619–25.

    Article  PubMed  Google Scholar 

  8. Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y. Characteristics of deformation and transformation pseudoelasticity in Ti–Ni alloys. J Phys Coll. 1982;43:C4–255.

    Google Scholar 

  9. Liu Y, VanHumbeeck J, Stalmans R, Delaey L. Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd. 1997;247:115–21.

    Article  Google Scholar 

  10. Johnson E, Lloyd A, Kuttler S, Namerow K. Comparison between a novel nickel–titanium alloy and 508 Nitinol on the cyclic fatigue life of Profile 25/.04 rotary instruments. J Endod. 2008;34:1406–9.

    Article  PubMed  Google Scholar 

  11. Larsen CM, Watanabe I, Glickman GN, He J. Cyclic fatigue analysis of a new generation of nickel–titanium rotary instruments. J Endod. 2009;35:401–3.

    Article  PubMed  Google Scholar 

  12. Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. A comparison of cyclic fatigue between used and new Mtwo Ni–Ti rotary instruments. Int Endod J. 2006;39:716–23.

    Article  PubMed  Google Scholar 

  13. Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. Influence of a brushing working motion on the fatigue life of NiTi rotary instruments. Int Endod J. 2007;40:45–51.

    Article  PubMed  Google Scholar 

  14. Plotino G, Grande NM, Melo MC, Bahia MG, Testarelli L, Gambarini G. Cyclic fatigue of NiTi rotary instruments in a simulated apical abrupt curvature. Int Endod J. 2010;43:226–30.

    Article  PubMed  Google Scholar 

  15. Plotino G, Grande NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:e60–6.

    Article  PubMed  Google Scholar 

  16. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. Influence of the shape of artificial canals on the fatigue resistance of NiTi rotary instruments. Int Endod J. 2010;43:69–75.

    Article  PubMed  Google Scholar 

  17. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel–titanium rotary systems. Int Endod J. 2006;10:755–63.

    Article  Google Scholar 

  18. Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, Testarelli L. Fatigue resistance of engine-driven rotary nickel–titanium instruments produced by new manufacturing methods. J Endod. 2008;34:1003–5.

    Article  PubMed  Google Scholar 

  19. Gambarini G, Plotino G, Grande NM, Al-Sudani D, De Luca M, Testarelli L. Mechanical properties of nickel-titanium rotary instruments produced with a new manufacturing technique. Int Endod J. 2011;44:337–41.

    Article  PubMed  Google Scholar 

  20. Testarelli L, Plotino G, Al-Sudani D, Vincenzi V, Giansiracusa A, Grande NM, Gambarini G. Bending properties of a new nickel-titanium alloy with a lower percentage by weight of nickel. J Endod. 2011;37:1293–5.

    Article  PubMed  Google Scholar 

  21. Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel–titanium rotary instruments. J Endod. 2011;37:1566–71.

    Article  PubMed  Google Scholar 

  22. Boessler C, Paque F, Peters OA. The effect of electropolishing on torque and force during simulated root canal preparation with ProTaper shaping files. J Endod. 2009;35:102–6.

    Article  PubMed  Google Scholar 

  23. Bui TB, Mitchell JC, Baumgartner JC. Effect of electropolishing ProFile nickel–titanium rotary instruments on cyclic fatigue resistance, torsional resistance, and cutting efficiency. J Endod. 2008;34:190–3.

    Article  PubMed  Google Scholar 

  24. Cheung GS, Shen Y, Darvell BW. Does electropolishing improve the low-cycle fatigue behavior of a nickel–titanium rotary instrument in hypochlorite? J Endod. 2007;33:1217–21.

    Article  PubMed  Google Scholar 

  25. Anderson ME, Price JW, Parashos P. Fracture resistance of electropolished rotary nickel–titanium endodontic instruments. J Endod. 2007;33:1212–6.

    Article  PubMed  Google Scholar 

  26. Hayashi Y, Yoneyama T, Yahata Y, et al. Phase transformation behaviour and bending properties of hybrid nickel–titanium rotary endodontic instruments. Int Endod J. 2007;40:247–53.

    Article  PubMed  Google Scholar 

  27. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Effect of enviroment on fatigue failure of controlled memory wire nickel–titanium rotary instruments. J Endod. 2012;38:376–80.

    Article  PubMed  Google Scholar 

  28. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel–titanium rotary instruments. J Endod. 2011;37:997–1001.

    Article  PubMed  Google Scholar 

  29. Peters OA, Gluskin AK, Weiss RA, Han JT. An in vitro assessment of the physical properties of novel Hyflex nickel–titanium rotary instruments. Int Endod J. 2012. doi:10.1111/j.1365-2591.2012.02067.x.

    Google Scholar 

  30. Ye J, Gao Y. Metallurgical characterization of M-wire nickel–titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod. 2012;38:105–7.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Plotino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotino, G., Testarelli, L., Al-Sudani, D. et al. Fatigue resistance of rotary instruments manufactured using different nickel–titanium alloys: a comparative study. Odontology 102, 31–35 (2014). https://doi.org/10.1007/s10266-012-0088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-012-0088-8

Keywords

Navigation