Skip to main content

In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow


Mesenchymal stem cells derived from human teeth and bone marrow have been characterized by many research groups, but demonstrate inconsistent cellular phenotypes or functions, partly because of differences in culture methodology. Therefore, our aims were to resolve these inconsistencies and discuss the potential uses of these cells in research/clinical applications. We isolated and characterized dental stem cells (DSCs) from the dental pulp, periodontal ligament, apical papilla (APSCs) and dental follicle (DFSCs) of mature and immature teeth, along with bone marrow-derived stem cells (BMSCs) from the iliac crest. We compared the clonogenic and proliferative potentials of these cells in terms of colony-forming efficiency, proliferation potential, population doubling time and cell cycle. All DSCs, particularly APSCs and DFSCs, possessed greater proliferative potential than BMSCs. All stem cells expressed typical mesenchymal and embryonic markers, and developed alizarin red-positive mineralization nodules and Oil red O-positive lipid droplets when cultured in osteogenic and adipogenic media, respectively. Immunocytochemistry revealed that all stem cells developed neuronal markers when cultured in a control medium without neural inductive supplements. After 7 days of neurogenic culture, the differentiated cells showed a transition from fibroblast-like to neuron-like cell bodies with long processes, suggesting that the stem cells differentiated into mature neurons. Karyotyping confirmed that the stem cells maintained a normal karyotype and were chromosomally stable. Our results provide new insights into the physiological properties of stem cells with a normal karyotype and indicate that DSCs are appropriate for basic research and clinical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    PubMed  Article  Google Scholar 

  2. 2.

    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    PubMed  Article  Google Scholar 

  3. 3.

    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    PubMed  Article  Google Scholar 

  4. 4.

    Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384–92.

    PubMed  Article  Google Scholar 

  5. 5.

    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    PubMed  Article  Google Scholar 

  6. 6.

    Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191–9.

    PubMed  Article  Google Scholar 

  7. 7.

    Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells. 2002;20:249–58.

    PubMed  Article  Google Scholar 

  8. 8.

    Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.

    PubMed  Google Scholar 

  9. 9.

    Casagrande L, Cordeiro MM, Nor SA, Nor JE. Dental pulp stem cells in regenerative dentistry. Odontology. 2011;99:1–7.

    PubMed  Article  Google Scholar 

  10. 10.

    Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85:966–79.

    PubMed  Article  Google Scholar 

  11. 11.

    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97:13625–30.

    PubMed  Article  Google Scholar 

  12. 12.

    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100:5807–12.

    PubMed  Article  Google Scholar 

  13. 13.

    Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.

    PubMed  Article  Google Scholar 

  14. 14.

    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    PubMed  Article  Google Scholar 

  15. 15.

    Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24:155–65.

    PubMed  Article  Google Scholar 

  16. 16.

    Ishkitiev N, Yaegaki K, Calenic B, Nakahara T, Ishikawa H, Mitiev V, Haapasalo M. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod. 2010;36:469–74.

    PubMed  Article  Google Scholar 

  17. 17.

    Ding G, Liu Y, Wang W, Wei F, Liu D, Fan Z, An Y, Zhang C, Wang S. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells. 2010;28:1829–38.

    PubMed  Article  Google Scholar 

  18. 18.

    Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008;26:2408–18.

    PubMed  Article  Google Scholar 

  19. 19.

    Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M, Kawase M, Go MJ, Adachi H, Yokota Y, Kirita T, Ohgushi H. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation. 2008;76:495–505.

    PubMed  Article  Google Scholar 

  20. 20.

    Huang AH, Snyder BR, Cheng PH, Chan AW. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells. 2008;26:2654–63.

    PubMed  Article  Google Scholar 

  21. 21.

    Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepulveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26:638–45.

    PubMed  Article  Google Scholar 

  22. 22.

    Nakahara T, Nakamura T, Kobayashi E, Kuremoto K, Matsuno T, Tabata Y, Eto K, Shimizu Y. In situ tissue engineering of periodontal tissues by seeding with periodontal ligament-derived cells. Tissue Eng. 2004;10:537–44.

    PubMed  Article  Google Scholar 

  23. 23.

    Nakahara T, Nakamura T, Kobayashi E, Inoue M, Shigeno K, Tabata Y, Eto K, Shimizu Y. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 2003;9:153–62.

    PubMed  Article  Google Scholar 

  24. 24.

    Nakahara T. Tooth/periodontal organ engineering: the ultimate goal of tooth regeneration. In: GN. G, editor. Tissue Eng Res Trends. New York: Nova Science Publishers; 2008. p. 7-13.

  25. 25.

    Nakahara T, Ide Y. Tooth regeneration: implications for the use of bioengineered organs in first-wave organ replacement. Hum Cell. 2007;20:63–70.

    PubMed  Article  Google Scholar 

  26. 26.

    Nakahara T. A review of new developments in tissue engineering therapy for periodontitis. Dent Clin North Am. 2006;50:265–76. ix-x.

    PubMed  Article  Google Scholar 

  27. 27.

    Ishiwata I, Nozawa S, Nagai S, Kurhihara S, Mikata A. Establishment of a human leiomyosarcoma cell line. Cancer Res. 1977;37:658–64.

    PubMed  Google Scholar 

  28. 28.

    Momose F, Araida T, Negishi A, Ichijo H, Shioda S, Sasaki S. Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. J Oral Pathol Med. 1989;18:391–5.

    PubMed  Article  Google Scholar 

  29. 29.

    Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y, Huard J. Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell. 2005;16:3323–33.

    PubMed  Article  Google Scholar 

  30. 30.

    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.

    PubMed  Article  Google Scholar 

  31. 31.

    Nakahara T, Tamaki Y, Tominaga N, Ide Y, Nasu M, Ohyama A, Sato S, Ishiwata I, Ishikawa H. Novel amelanotic and melanotic cell lines NM78-AM and NM78-MM derived from a human oral malignant melanoma. Hum Cell. 2010;23:15–25.

    PubMed  Google Scholar 

  32. 32.

    Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73.

    PubMed  Article  Google Scholar 

  33. 33.

    Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Goebel WS. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med. 2010;4:73–81.

    PubMed  Google Scholar 

  34. 34.

    Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219:667–76.

    PubMed  Article  Google Scholar 

  35. 35.

    Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    PubMed  Article  Google Scholar 

  36. 36.

    Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, Takahashi K, Homma K, Oyamada N, Inuzuka M, Sonoyama T, Ebihara K, Tamura N, Itoh H, Suemori H, Nakatsuji N, Okano H, Yamanaka S, Nakao K. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett. 2009;583:1029–33.

    PubMed  Article  Google Scholar 

  37. 37.

    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    PubMed  Article  Google Scholar 

  38. 38.

    Vollner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation. 2009;77:433–41.

    PubMed  Article  Google Scholar 

  39. 39.

    Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008;26:1787–95.

    PubMed  Article  Google Scholar 

  40. 40.

    Hermann A, Liebau S, Gastl R, Fickert S, Habisch HJ, Fiedler J, Schwarz J, Brenner R, Storch A. Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res. 2006;83:1502–14.

    PubMed  Article  Google Scholar 

  41. 41.

    Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127:1671–9.

    PubMed  Google Scholar 

  42. 42.

    Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev. 1997;67:111–23.

    PubMed  Article  Google Scholar 

  43. 43.

    Suzuki M, Tominaga N, Ide Y, Ohyama A, Nakahara T, Ishikawa H, Tanaka A, Mataga I. Establishment and characterization of the rhabdomyosarcoma cell line designated NUTOS derived from the human tongue sarcoma: special reference to the susceptibility of anti-cancer drugs. Hum Cell. 2010;23:65–73.

    PubMed  Article  Google Scholar 

  44. 44.

    Ide Y, Nakahara T, Nasu M, Tominaga N, Ohyama A, Tachibana T, Yasuda M. Establishment and characterization of the NEYS cell line derived from carcinosarcoma of human ovary with special reference to the susceptibility test of anticancer drugs. Hum Cell. 2009;22:72–80.

    PubMed  Article  Google Scholar 

  45. 45.

    Rahaman MN, Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng. 2005;91:261–84.

    PubMed  Article  Google Scholar 

  46. 46.

    Holden C, Vogel G. Stem cells. Plasticity: time for a reappraisal? Science. 2002;296:2126–9.

    PubMed  Article  Google Scholar 

  47. 47.

    Nakahara T. Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering. Odontology. 2011;99:105–11.

    PubMed  Article  Google Scholar 

  48. 48.

    Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol. 2010;223:415–22.

    PubMed  Google Scholar 

  49. 49.

    Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006;208:319–25.

    PubMed  Article  Google Scholar 

  50. 50.

    Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res. 2005;84:907–12.

    PubMed  Article  Google Scholar 

Download references


This work was supported by a Grant-in-Aid for Scientific Research (No. 20390501 to H. I., S. S., T. N. and 19791467 to T. N.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Science Research Promotion Fund (2008–2010 to T. N., H. I., S. S.) from the Promotion and Mutual Aid Corporation for Private Schools of Japan; and a Research Grant (2009–2010 to T. N., H. I., S. S.) from the Nippon Dental University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to Taka Nakahara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tamaki, Y., Nakahara, T., Ishikawa, H. et al. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology 101, 121–132 (2013).

Download citation


  • Mesenchymal stem cells
  • Dental
  • Periodontal
  • Bone marrow
  • Characterization