Skip to main content

Advertisement

Log in

Streptococcus gordonii promotes rapid differentiation of monocytes into dendritic cells through interaction with the sialic acid-binding adhesin

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Infective endocarditis is frequently attributed to oral streptococci. Although the pathogenetic mechanisms are not well understood, interaction between streptococci and phagocytes is thought to be important for infective endocarditis. In this study, HL-60 cell-derived monocytes were characterized following interaction with Streptococcus gordonii DL1. Exposure of monocytes to S. gordonii DL1 induced up-regulation of the dendritic cell (DC) markers CD83, CD1a, CD86, and interleukin-12, while monocyte markers PU.1 and MafB, which are typically present at low levels in mature DCs, were down-regulated. Interaction of HL-60-derived monocytes with S. gordonii DL1 was instructive for DC differentiation in the absence of released cytokines. Furthermore, neither the filtered culture medium of S. gordonii nor the hsa mutant, deficient in sialic acid-binding activity, was able to induce the differentiation of HL-60 cells. Taken together, these data suggest that monocytes stimulated with S. gordonii DL1 rapidly undergo monocyte-to-DC differentiation through interaction with the bacterial surface receptor Hsa and that this response may be the initial step in infective endocarditis by oral streptococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66:486–505.

    Article  PubMed  Google Scholar 

  2. Baddour LM, Christensen GD, Lowrance JH, Simpson WA. Pathogenesis of experimental endocarditis. Rev Infect Dis. 1989;11:452–63.

    Article  PubMed  Google Scholar 

  3. Baddour LM. Virulence factors among gram-positive bacteria in experimental endocarditis. Infect Immun. 1994;62:2143–8.

    PubMed  Google Scholar 

  4. Durack DT. Prevention of infective endocarditis. N Engl J Med. 1995;332:38–44.

    Article  PubMed  Google Scholar 

  5. Ruhl S, Cisar JO, Sandberg AL. Identification of polymorphonuclear leukocyte and HL-60 cell receptors for adhesins of Streptococcus gordonii and Actinomyces naeslundii. Infect Immun. 2000;68:6346–54.

    Article  PubMed  Google Scholar 

  6. Takahashi Y, Sandberg AL, Ruhl S, Muller J, Cisar JO. A specific cell surface antigen of Streptococcus gordonii is associated with bacterial hemagglutination and adhesion to α2–3-linked sialic acid-containing receptors. Infect Immun. 1997;65:5042–51.

    PubMed  Google Scholar 

  7. Takahashi Y, Yajima A, Cisar JO, Konishi K. Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun. 2004;72:3876–82.

    Article  PubMed  Google Scholar 

  8. Yajima A, Urano-Tashiro Y, Shimazu K, Takashima E, Takahashi Y, Konishi K. Hsa, an adhesin of Streptococcus gordonii DL1, binds to α2–3-linked sialic acid on glycophorin A of the erythrocyte membrane. Microbiol Immunol. 2008;52:69–77.

    Article  PubMed  Google Scholar 

  9. Urano-Tashiro Y, Yajima A, Takashima E, Takahashi Y, Konishi K. Binding of the Streptococcus gordonii DL1 surface protein Hsa to the host cell membrane glycoproteins CD11b, CD43, and CD50. Infect Immun. 2008;76:4686–91.

    Article  PubMed  Google Scholar 

  10. Herzberg MC. Platelet–streptococcal interactions in endocarditis. Crit Rev Oral Biol Med. 1996;7:222–36.

    Article  PubMed  Google Scholar 

  11. Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol. 2006;4:445–57.

    Article  PubMed  Google Scholar 

  12. Kerrigan SW, Cox D. Platelet–bacterial interactions. Cell Mol Life Sci. 2010;67:513–23.

    Article  PubMed  Google Scholar 

  13. Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, López JA, Griffiss JM, Sullam PM. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol. 2005;58:380–92.

    Article  PubMed  Google Scholar 

  14. Kerrigan SW, Jakubovics NS, Keane C, Maguire P, Wynne K, Jenkinson HF, Cox D. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun. 2007;75:5740–7.

    Article  PubMed  Google Scholar 

  15. Petersen HJ, Keane C, Jenkinson HF, Vickerman MM, Jesionowski A, Waterhouse JC, Cox D, Kerrigan SW. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun. 2010;78:413–22.

    Article  PubMed  Google Scholar 

  16. Siboo IR, Chambers HF, Sullam PM. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun. 2005;73:2273–80.

    Article  PubMed  Google Scholar 

  17. Takahashi Y, Takashima E, Shimazu K, Yagishita H, Aoba T, Konishi K. Contribution of sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by Streptococcus gordonii DL1. Infect Immun. 2006;74:740–3.

    Article  PubMed  Google Scholar 

  18. Young Lee S, Cisar JO, Bryant JL, Eckhaus MA, Sandberg AL. Resistance of Streptococcus gordonii to polymorphonuclear leukocyte killing is a potential virulence determinant of infective endocarditis. Infect Immun. 2006;74:3148–55.

    Article  PubMed  Google Scholar 

  19. Bancsi MJ, Veltrop MH, Bertina RM, Thompson J. Role of phagocytosis in activation of the coagulation system in Streptococcus sanguis endocarditis. Infect Immun. 1996;64:5166–70.

    PubMed  Google Scholar 

  20. Buiting AG, Thompson J, van der Keur D, Schmal-Bauer WC, Bertina RM. Procoagulant activity of endocardial vegetations and blood monocytes in rabbits with Streptococcus sanguis endocarditis. Thromb Haemost. 1989;62:1029–33.

    PubMed  Google Scholar 

  21. Durack DT, Beeson PB. Experimental bacterial endocarditis. II. Survival of a bacteria in endocardial vegetations. Br J Exp Pathol. 1972;53:50–3.

    PubMed  Google Scholar 

  22. Takahashi Y, Konishi K, Cisar JO, Yoshikawa M. Identification and characterization of hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1. Infect Immun. 2002;70:1209–18.

    Article  PubMed  Google Scholar 

  23. Tanaka H, Abe E, Miyaura C, Shiina Y, Suda T. 1α,25-Dihydroxyvitamin D3 induces differentiation of human promyelocytic leukemia cells (HL-60) into monocyte-macrophages, but not into granulocytes. Biochem Biophys Res Commun. 1983;117:86–92.

    Article  PubMed  Google Scholar 

  24. Hahn CL, Schenkein HA, Tew JG. Endocarditis-associated oral streptococci promote rapid differentiation of monocytes into mature dendritic cells. Infect Immun. 2005;73:5015–21.

    Article  PubMed  Google Scholar 

  25. Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1:510–4.

    Article  PubMed  Google Scholar 

  26. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC. Dendritic cells as the terminal stage of monocyte differentiation. J Immunol. 1998;160:4587–95.

    PubMed  Google Scholar 

  27. Ciabattini A, Cuppone AM, Pulimeno R, Iannelli F, Pozzi G, Medaglini D. Stimulation of human monocytes with the gram-positive vaccine vector Streptococcus gordonii. Clin Vaccine Immunol. 2006;13:1037–43.

    Article  PubMed  Google Scholar 

  28. Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stülke J, Dabauvalle MC, Kehlenbach RH, Hauber J. Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem. 2006;281:10912–25.

    Article  PubMed  Google Scholar 

  29. Hock BD, Patton WN, Budhia S, Mannari D, Roberts P, McKenzie JL. Human plasma contains a soluble form of CD86 which is present at elevated levels in some leukaemia patients. Leukemia. 2002;16:865–73.

    Article  PubMed  Google Scholar 

  30. Mamoni RL, Blotta MH. Kinetics of cytokines and chemokines gene expression distinguishes Paracoccidioides brasiliensis infection from disease. Cytokine. 2005;32:20–9.

    Article  PubMed  Google Scholar 

  31. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176:57–66.

    Article  PubMed  Google Scholar 

  32. Thomas V, Samanta S, Wu C, Berliner N, Fikrig E. Anaplasma phagocytophilum modulates gp91phox gene expression through altered interferon regulatory factor 1 and PU.1 levels and binding of CCAAT displacement protein. Infect Immun. 2005;73:208–18.

    Article  PubMed  Google Scholar 

  33. He Q, Li Q, Yuan LB, He J. A new 2-aminosteroid induces cellular differentiation and upregulates the expression of MafB and Egr-1 genes respectively in HL-60 and K562 leukemia cells. Chin Med J. 2005;118:91–9.

    PubMed  Google Scholar 

  34. Bakri Y, Sarrazin S, Mayer UP, Tillmanns S, Nerlov C, Boned A, Sieweke MH. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood. 2005;105:2707–16.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (No. 18890209) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Urano-Tashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urano-Tashiro, Y., Yajima, A., Takahashi, Y. et al. Streptococcus gordonii promotes rapid differentiation of monocytes into dendritic cells through interaction with the sialic acid-binding adhesin. Odontology 100, 144–148 (2012). https://doi.org/10.1007/s10266-011-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-011-0044-z

Keywords

Navigation