Odontology

, Volume 99, Issue 1, pp 1–7 | Cite as

Dental pulp stem cells in regenerative dentistry

  • Luciano Casagrande
  • Mabel M. Cordeiro
  • Silvia A. Nör
  • Jacques E. Nör
Review Article

Abstract

Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer’s disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

Key words

Tissue engineering Endodontics Odontoblasts Endothelial cells Dentin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–926.CrossRefPubMedGoogle Scholar
  2. 2.
    van der Kooy D, Weiss S. Why stem cells. Science 2000;287:1439–1441.CrossRefPubMedGoogle Scholar
  3. 3.
    Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005;34:415–423.CrossRefPubMedGoogle Scholar
  4. 4.
    Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000;113:5–10.PubMedGoogle Scholar
  5. 5.
    Gardner RL. Stem cells: potency, plasticity and public perception. J Anat 2002;200:277–282.CrossRefPubMedGoogle Scholar
  6. 6.
    Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler T, Ghivizzani TC, Evans T, Robbins TD, Huard. Osteoprogenitor cells within skeletal muscle. J Orthop Res 2000;18:933–944.CrossRefPubMedGoogle Scholar
  7. 7.
    Gage FH. Mammalian neural stem cells. Science 2000;287:1433–1438.CrossRefPubMedGoogle Scholar
  8. 8.
    Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003;5:362–369.CrossRefPubMedGoogle Scholar
  9. 9.
    Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 1993;73:713–724.CrossRefPubMedGoogle Scholar
  10. 10.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000:97:13625–13630.CrossRefPubMedGoogle Scholar
  11. 11.
    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003;100:5807–5812.CrossRefPubMedGoogle Scholar
  12. 12.
    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004;364:149–155.CrossRefPubMedGoogle Scholar
  13. 13.
    Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S. Mesenchymal stem cellmediated functional tooth regeneration in swine. PLoS One 2006;1:e79.CrossRefPubMedGoogle Scholar
  14. 14.
    Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008;34:166–171.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009;88:792–806.CrossRefPubMedGoogle Scholar
  16. 16.
    Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007;99:465–474.CrossRefPubMedGoogle Scholar
  17. 17.
    Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002;81:695–700.CrossRefPubMedGoogle Scholar
  18. 18.
    Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res 2004;83:518–522.CrossRefPubMedGoogle Scholar
  19. 19.
    Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008;34:962–969.CrossRefPubMedGoogle Scholar
  20. 20.
    Sakai VT, Zhang Z, Dong Z, Neiva K, Machado M, Shi S, Santos C, Nör JE. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010;89:791–796.CrossRefPubMedGoogle Scholar
  21. 21.
    Demarco FF, Casagrande L, Zhang Z, Dong Z, Tarquinio SB, Zeitlin BD, Shi S, Smith AJ, Nör JE. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells. J Endod 2010;36:1805–1811.CrossRefPubMedGoogle Scholar
  22. 22.
    Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res 2010;89:603–608.CrossRefPubMedGoogle Scholar
  23. 23.
    Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba, CM, Gaiad, TP, Morini AC, Vieira NM, Brolio, MP, Sant’anna OA, Miglino, MA, Zatz, M. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 2008;3:35.CrossRefGoogle Scholar
  24. 24.
    Seo, BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S. SHED repair critical-size calvarial defects in mice. Oral Dis 2008;4:428–434.CrossRefGoogle Scholar
  25. 25.
    Monteiro BG, Serafim RC, Melo GB, Silva MC, Lizier NF, Maranduba CM, Smith RL, Kerkis A, Cerruti H, Gomes JA, Kerkis I. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 2009;42:587–594.CrossRefPubMedGoogle Scholar
  26. 26.
    Ishkitiev N, Yaegaki K, Calenic B, Nakahara T, Ishikawa H, Mitiev V, Haapasalo M. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 2010;36:469–474.CrossRefPubMedGoogle Scholar
  27. 27.
    Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 2001;238:120–132.CrossRefPubMedGoogle Scholar
  28. 28.
    Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010;1:5.CrossRefPubMedGoogle Scholar
  29. 29.
    Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med 2001;12:425–437.CrossRefPubMedGoogle Scholar
  30. 30.
    Smith AJ, Murray PE, Sloan AJ, Matthews JB, Zhao S. Transdentinal stimulation of tertiary dentinogenesis. Adv Dent Res 2001;15:51–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGFbeta in human dentin. J Bone Miner Res 1990;5:717–723.CrossRefPubMedGoogle Scholar
  32. 32.
    Ruch JV, Lesot H, Bègue-Kirn C. Odontoblast differentiation. Int J Dev Biol 1995;39:51–68.PubMedGoogle Scholar
  33. 33.
    Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000;45:1013–1016.CrossRefPubMedGoogle Scholar
  34. 34.
    Tziafas D. Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol 1995;39:281–290.PubMedGoogle Scholar
  35. 35.
    Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials 2006;27:2865–2873.CrossRefPubMedGoogle Scholar
  36. 36.
    Fitzgerald M, Chiego DJ Jr, Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 1990;35:707–715.CrossRefPubMedGoogle Scholar
  37. 37.
    Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H. Reactionary dentinogenesis. Int J Dev Biol 1995;39:273–280.PubMedGoogle Scholar
  38. 38.
    Murray PE, Smith AJ. Saving pulps: a biological basis. An overview. Prim Dent Care 2002;9:21–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Nakashima M. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and -4 with collagen matrix. Arch Oral Biol 1994;39:1085–1089.CrossRefPubMedGoogle Scholar
  40. 40.
    Rutherford RB, Wahle J, Tucker M, Rueger D, Charette M. Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 1993;38:571–576.CrossRefPubMedGoogle Scholar
  41. 41.
    He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater 2003;2:552–558.CrossRefPubMedGoogle Scholar
  42. 42.
    He G, Gajjeraman S, Schultz D, Cookson D, Qin C, Butler WT, Hao J, George A. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry. 2005;44:16140–16148.CrossRefPubMedGoogle Scholar
  43. 43.
    Decup F, Six N, Palmier B, Buch D, Lasfargues JJ, Salih E, Goldberg M. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat’s molar. Clin Oral Investig 2000;4:110–119.CrossRefPubMedGoogle Scholar
  44. 44.
    Six N, Decup F, Lasfargues JJ, Salih E, Goldberg M. Osteogenic proteins (bone sialoprotein and bone morphogenetic protein-7) and dental pulp mineralization. J Mater Sci Mater Med 2002;13:225–232.CrossRefPubMedGoogle Scholar
  45. 45.
    Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev 2005;16:369–376.CrossRefPubMedGoogle Scholar
  46. 46.
    Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, John AS, George A. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 2008;34:421–426.CrossRefPubMedGoogle Scholar
  47. 47.
    Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003;21:1025–1032.CrossRefPubMedGoogle Scholar
  48. 48.
    Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 2005;31:711–718.CrossRefPubMedGoogle Scholar
  49. 49.
    Bohl KS, Shon J, Rutherford B, Mooney DJ. Role of synthetic extracellular matrix in development of engineered dental pulp. J Biomater Sci Polym Ed 1998;9:749–764.CrossRefPubMedGoogle Scholar
  50. 50.
    Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology 1994;12:689–693.CrossRefPubMedGoogle Scholar
  51. 51.
    Gonçalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nör JE. Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod 2007;33:811–814.CrossRefPubMedGoogle Scholar
  52. 52.
    Galler KM, Aulisa L, Regan KR, D’souza RN, Hartgerink JD. Selfassembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J Am Chem Soc 2010;132:3217–3223.CrossRefPubMedGoogle Scholar
  53. 53.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.CrossRefPubMedGoogle Scholar
  54. 54.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439–442.CrossRefPubMedGoogle Scholar
  55. 55.
    Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5:623–628.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007;117:1616–1626.CrossRefPubMedGoogle Scholar
  57. 57.
    Stephens TD, Bunde CJ, Fillmore BJ. Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol 2000;59:1489–1499.CrossRefPubMedGoogle Scholar
  58. 58.
    Martin P. Wound healing; aiming for perfect skin regeneration. Science 1997;276:75–81.CrossRefPubMedGoogle Scholar
  59. 59.
    Tedder TF, Steeber DA, Chen A, Engel P. The selectins; vascular adhesion molecules. FASEB J 1995;9:866–873.PubMedGoogle Scholar
  60. 60.
    Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010;89:219–229.CrossRefPubMedGoogle Scholar
  61. 61.
    Mathieu S, Battari AE, Dejou J, About I. Role of injured endothelial cells in the recruitment of human pulp cells. Arch Oral Biol 2005;50:109–113.CrossRefPubMedGoogle Scholar
  62. 62.
    Carmeliet P, Collen D. Molecular analysis of blood vessel formation and disease. Am J Physiol 1997;273:H2091–H2104.PubMedGoogle Scholar
  63. 63.
    Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2009;29:789–791.CrossRefPubMedGoogle Scholar
  64. 64.
    Nör JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 1999;154:375–384.PubMedGoogle Scholar
  65. 65.
    Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676.CrossRefPubMedGoogle Scholar
  66. 66.
    Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999;77:527–543.CrossRefPubMedGoogle Scholar
  67. 67.
    Mullane EM, Dong Z, Sedgley CM, Hu JC, Botero TM, Holland GR, Nör JE. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 2008;87:1144–1148.CrossRefPubMedGoogle Scholar
  68. 68.
    Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008;26:2408–2418.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang R, Cooper PR, Smith G, Nör JE, Smith AJ. Angiogenic activity of dentin matrix components. J Endod 2011;37:26–30.CrossRefPubMedGoogle Scholar
  70. 70.
    Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet 2005;366:592–602.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2011

Authors and Affiliations

  • Luciano Casagrande
    • 1
  • Mabel M. Cordeiro
    • 1
  • Silvia A. Nör
    • 1
  • Jacques E. Nör
    • 1
    • 2
    • 3
  1. 1.Department of Cariology, Restorative Sciences and EndodonticsUniversity of Michigan School of DentistryAnn ArborUSA
  2. 2.Department of Biomedical EngineeringUniversity of Michigan College of EngineeringAnn ArborUSA
  3. 3.Department of OtolaryngologyUniversity of Michigan School of MedicineAnn ArborUSA

Personalised recommendations