, Volume 99, Issue 1, pp 28–33 | Cite as

The effects of oral xylitol administration on bone density in rat femur

  • Hirokazu SatoEmail author
  • Yoshiaki Ide
  • Masanori Nasu
  • Yukihiro Numabe
Original Article


To examine the effects of oral xylitol administration on rat femur bone density, 36 four-week-old male Wistar rats divided into three groups were fed CE-2 diet (control, n = 12) alone or supplemented with 10% (n = 12) or 20% (n = 12) dietary xylitol for 40 days. Biochemical, morphological, and histological analyses were performed. The 10% and 20% xylitol groups showed higher levels of both serum Ca and alkaline phosphatase activity and lower levels of serum tartrate-resistant acid phosphatase than the control group. Although no significant differences in the three-dimensional bone structure or trabecular bone structure of the femur were observed, both xylitol groups showed significantly higher bone density than the control group. Compared to the control group, the 10% and 20% xylitol groups showed an increase in trabeculae. Thus, oral administration of xylitol appears to affect bone metabolism, leading to increased bone density in rat femur.

Key words

Xylitol Oral administration Bone density μCT Trabecular bone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Washuttl J, Reiderer P, Banche E. A qualitative and quantitative study of sugar-alcohols in several foods. J Food Sci 1973;38: 1262–1263.CrossRefGoogle Scholar
  2. 2.
    Hollman S, Touster O. Non-glycolytic pathways of metabolism of glucose. New York: Academic Press; 1964.Google Scholar
  3. 3.
    Mäkinenn KK. Biochemical principles of the use of xylitol in medicine and nutrition with special consideration of dental aspects. Experientia Suppl 1978;30:1–160.Google Scholar
  4. 4.
    Mählemann H, Regolati B, Marthaler T. The effect on rat fissure caries of xylitol and sorbitol. Helv Odontol Acta 1970;14:48–50.Google Scholar
  5. 5.
    Mäkinenn KK. Enzyme dynamics of a cariogenic streptococcus. The effect of xylitol and sorbitol. J Dent Res 1972;51:403–408.CrossRefGoogle Scholar
  6. 6.
    Mäkinenn KK, Scheinin A. The effect of the consumption of various sugars on the activity of plaque and salivary enzymes. Int Dent J 1971;21:331–339.Google Scholar
  7. 7.
    Mäkinenn KK, Scheinin A. The effect of various sugar and sugar mixtures on the activity and formation of enzymes of dental plaque and oral fluid. Acta Odontol Scand 1972;30:259–275.CrossRefGoogle Scholar
  8. 8.
    Scheinin A, Mäkinenn KK. The effect of various sugars on the formation and chemical composition of dental plaque. Int Dent J 1971;21:302–321.PubMedGoogle Scholar
  9. 9.
    Scheinin A, Mäkinenn KK (eds). Turku sugars studies I-XXI. Acta Odontol Scand 1975;Suppl 70:1–351.Google Scholar
  10. 10.
    Loesche WJ, Earnest R, Grossman NS, Corpron R. The effects of chewing gum on the plaque and saliva levels of Streptococcus mutans. J Am Dent Assoc 1984;108:587–591.PubMedGoogle Scholar
  11. 11.
    Mäkinen KK, Sderling E, Isokangas PJ, Tenovuo J, Tiekso J. Oral biochemical status and depression of Streptococcus mutans in children during 24- to 36-month use of xylitol chewing gum. Caries Res 1989;23:261–267.CrossRefPubMedGoogle Scholar
  12. 12.
    Steinberg LM, Odusola F, Mandel ID. Remineralizing potential, antiplaque and antigingivitis effects of xylitol and sorbitol sweetened chewing gum. Clin Prev Dent 1992;14:31–34.PubMedGoogle Scholar
  13. 13.
    Cronin M, Gordon J, Reardon R, Balbo F. Three clinical trials comparing xylitol-and sorbitol-containing chewing gums for their effect on supragingival plaque accumulation. J Clin Dent 1994;5: 106–109.PubMedGoogle Scholar
  14. 14.
    Mäkinen KK, Isotupa KP, Mäkinen PL, Sderling E, Song KB, Nam SH, Jeong SH. Six-month polyol chewing-gum programme in kindergarten-age children. A feasibility study focusing on mutans streptococci and dental plaque. Int Dent J 2005;55: 81–88.Google Scholar
  15. 15.
    Sato H, Ito H, Murakashi E, Sekino S, Numabe Y. Effects of xylitolcontaining chewing gum on plaque formation and salivary components [in Japanese]. J Jpn Soc Periodontol 2008;50:231–237.CrossRefGoogle Scholar
  16. 16.
    Georgieff M, Moldawer LL, Bistrian BR, Blackbum GL. Xylitol, an energy source for intravenous nutrition after trauma. J Parenter Ent Nutr 1985;9:199–209.CrossRefGoogle Scholar
  17. 17.
    Uhari M, Kontiokari T, Niemelä M. A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 1998;102:879–974.CrossRefPubMedGoogle Scholar
  18. 18.
    Mattila P, Svanberg M, Knuuttila M. Increased bone volume and bone mineral content in xylitol-fed aged rats. Gerontology 2001;47:300–305.CrossRefPubMedGoogle Scholar
  19. 19.
    Mattila P, Knuuttila M, Kovanen V, Svanberg M. Improved bone biomechanical properties in rats after oral xylitol administration. Calcif Tissue Int 1999;64:340–344.CrossRefPubMedGoogle Scholar
  20. 20.
    Svanberg M, Knuuttila M. The effects of dietary xylitol on recalcifying and newly formed cortical long bone in rats. Calcif Tissue Int 1993;53:135–138.CrossRefPubMedGoogle Scholar
  21. 21.
    Svanberg M, Knuuttila M. Dietary xylitol prevents ovariectomy induced changes of bone inorganic fraction in rats. Bone Miner 1994;26:81–88.CrossRefPubMedGoogle Scholar
  22. 22.
    Mattila P, Svanberg M, Knuuttila M. Diminished bone resorption in rats after oral xylitol administration. A dose-response study. Calcif Tissue 1995;56:232–235.Google Scholar
  23. 23.
    Svanberg M, Mattila P, Knuuttila M. Dietary xylitol retards the ovariectomy-induced increase of bone turnover in rats. Calcif Tissue Int 1997;60:462–466.CrossRefPubMedGoogle Scholar
  24. 24.
    Hildebrand T, Ruegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 1997;185:67–75.CrossRefGoogle Scholar
  25. 25.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry. Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987;2:595–610.CrossRefPubMedGoogle Scholar
  26. 26.
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor. A new parameter for simple quantification of bone microarchitecture. Bone 1992;13:327–330.CrossRefPubMedGoogle Scholar
  27. 27.
    Makkinen KK, Suzuki A, Fukuda M. Xylitol from A to Z [in Japanese]. Tokyo: Japan Finland Society for Caries Prevention; 1997.Google Scholar
  28. 28.
    Mäkinen KK, Scheinin A. Turku sugar studies, VI. The administration of the trial and the control of the dietary regimen. Acta Odontol Scand 1975;33 Suppl 70:105–127.Google Scholar
  29. 29.
    Mattila P, Svanberg M, Mäkinenn KK, Knuuttila M. Dietary xylitol, sorbitol and d-mannitol but not erythritol retard bone resorption in rats. J Nutr 1996;126:1865–1870.PubMedGoogle Scholar
  30. 30.
    Nishizawa Y. Bone-metabolism marker. In: Nishizawa Y, editor. Significance of measurement of bone-metabolism marker [in Japanese]. Osaka: Iyaku (Medicine & Drug) Journal Press; 2001. p. 16–27.Google Scholar
  31. 31.
    Hämäläinen MM, Mäkinenn KK, Parviainen MT, Koskinen T. Peroral xylitol increases intestinal calcium absorption in the rat independently of vitamin D action. Miner Electrol Metab 1985; 11:178–181.Google Scholar
  32. 32.
    Knuuttila M, Svanberg M, Hämäläinen MM. Alterations in rat bone composition related to polyol supplementation of the diet. Bone Miner 1989;6:25–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Hämäläinen MM, Knuuttila M, Svanberg M, Koskinen T. Comparison of the effect of glucose, lactose and xylitol on bone recalcification in calcium-deficient rats. Bone 1990;11:429–438.CrossRefPubMedGoogle Scholar
  34. 34.
    Matsumoto T. Molecular biology of bone and osteoporosis [in Japanese]. Tokyo: Medical Review Press; 2001.Google Scholar
  35. 35.
    Svanberg M, Knuuttila M. Dietary xylitol retards bone resorption in rats. Miner Electrolyte Metab 1994;20:153–157.PubMedGoogle Scholar
  36. 36.
    Minkin C. Bone acid phosphatase. Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 1982;34: 285–290.CrossRefPubMedGoogle Scholar
  37. 37.
    Ito M. Analysis of trabecular microstructure using micro-computed tomography [in Japanese]. Nippon Rinsho 1998;56:126–132.Google Scholar
  38. 38.
    Kanri Y, Shimazu Y, Aoba T. Use of microfocus x-ray computer tomography for 3D-image construction and quantitative morphoanalysis. J Oral Biosci 2004;46:67–73.CrossRefGoogle Scholar
  39. 39.
    Ferretti JL. Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone 1995;17:145–154.CrossRefGoogle Scholar
  40. 40.
    Oku T, Tanabe K, Watanabe Y, Ono H, Naruse M, Nakamura S. Effects of non-oligosaccharides with different properties on Ca and Mg metabolism in rats [in Japanese]. J Jpn Soc Nutr Food Sci 2007;60:233–240.CrossRefGoogle Scholar
  41. 41.
    Hirama Y, Morohashi T, Sano T, Maki K, Ohta A, Sakai N, Yamada S, Sara R. Fructo-oligosaccharides prevent disorders of the femoral neck following gastrectomy in growing rats. J Bone Miner Metab 2003;21:294–298.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2011

Authors and Affiliations

  • Hirokazu Sato
    • 1
    Email author
  • Yoshiaki Ide
    • 2
  • Masanori Nasu
    • 3
  • Yukihiro Numabe
    • 1
  1. 1.Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
  2. 2.Section of Developmental and Regenerative DentistryThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
  3. 3.Research Center for OdontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan

Personalised recommendations