Skip to main content
Log in

Tight relationship between two photosystems is robust in rice leaves under various nitrogen conditions

  • Regular Paper – Ecology/ecophysiology/environmental Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Leaf nitrogen (N) level affects not only photosynthetic CO2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700+) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700+ can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Download references

Acknowledgements

We are grateful to Dr. Kazuyuki Doi, Mr. Shinya Mizuno, Dr. Haruhiko Taneda as well as our laboratory members for their technical support, advice, and encouragement. This study was supported by the JSPS KAKENHI (Grant Numbers JP17H05729 and JP19H04732), and CREST, JST (JPMJCR15O3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Noguchi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 804 kb)

Supplementary file2 (XLSX 26 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaki, H., Mizokami, Y., Sugiura, D. et al. Tight relationship between two photosystems is robust in rice leaves under various nitrogen conditions. J Plant Res 136, 201–210 (2023). https://doi.org/10.1007/s10265-022-01431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-022-01431-7

Keywords

Navigation