Abstract
The androecium of Melastomataceae presents notable modifications in its merosity, morphology between whorls and in prolonged connectives and appendages. We carried out a comparative study of six Melastomataceae species to shed light on the developmental processes that originate such stamen diversity. The development of stamens was studied using scanning electron microscopy and histological observations. The stamens of all species studied have a curved shape because they emerge on a plane displaced by the perigynous hypanthium. They are the last flower organs to initiate and therefore their growth is inwards and towards the floral center. Despite the temporal inversion between carpels and stamens in Melastomataceae, the androecium maintains the centripetal pattern of development, the antepetalous stamens emerging after antesepalous stamens. The isomerous androecium can be the result of abortion of the antepetalous stamens, whereas heterostemony seems to be caused by differences in position and the stamen development time. Pedoconnectives and ventral appendages originate from the basal expansion of the anther late in floral development. The delay in stamen development may be a consequence of their dependence on the formation of a previous space so that they can grow. Most of the stamen diversity is explained by the formation of the connectives and their appendages. The formation of a basal-ventral anther prolongation, which culminates in the development of the pedoconnective, does not differ from other types of sectorial growth of the connective, which form shorter structures.
This is a preview of subscription content, access via your institution.










References
Almeda F (1978) Systematics of the genus Monochaetum (Melastomataceae) in Mexico and Centro America. Univ Calif Publ Bot 75:1–134
Almeda F, Martins AB (2015) Pterolepis haplostemona (Melastomataceae): a new serpentine endemic from Goiás, Brazil. Phytotaxa 201:233–238. https://doi.org/10.11646/phytotaxa.201.3.8
Almeda F, Robinson OR (2011) Systematics and phylogeny of Siphanthera (Melastomataceae). Syst Bot Monogr 93:1–101
Almeda F, Michelangeli FA, Viana PL (2016) Brasilianthus (Melastomataceae), a new monotypic genus endemic to ironstone outcrops in the Brazilian Amazon. Phytotaxa 273:269–282. https://doi.org/10.11646/phytotaxa.273.4.3
Aloni R (2021) Vascular differentiation and plant hormones. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-53202-4
Alvear M, Almeda F (2019) Revision of Monochaetum (Melastomataceae: Melastomateae) in Colombia. Syst Bot Monogr 109:1–153
Åstrand J, Knight C, Robson J, Talle B, Wilson ZA (2021) Evolution and diversity of the angiosperm anther: trends in function and development. Plant Reprod 34:307–319. https://doi.org/10.1007/s00497-021-00416-1
Bacci LF, Michelangeli FA, Goldenberg R (2019) Revisiting the classification of Melastomataceae: implications for habit and fruit evolution. Bot J Linn Soc 190:1–24. https://doi.org/10.1093/botlinnean/boz006
Ballard HE Jr, Paula-Souza J, Wahlert GA (2014) Flowering plants. Eudicots: Violaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 11. Springer. Berlin Heidelberg, Berlin, Heidelberg, pp 303–322. https://doi.org/10.1007/978-3-642-39417-1_25
Basso-Alves JP, Goldenberg R, Teixeira SP (2017) The ontogenetic bases for variation in ovary position in Melastomataceae. Am J Bot 104:1142–1156. https://doi.org/10.3732/ajb.1700114
Baum H, Leinfellner W (1953) Die ontogenetischen Abänderungen des diplophyllen Grundbaues der Staubblätter. Oesterr Bot Z 100:91–135. https://doi.org/10.1007/BF02230791
Beentje HJ (2010) The Kew plant glossary: an illustrated dictionary of plant terms. Kew
Bochorny T, Michelangeli FA, Almeda F, Goldenberg R (2019) Phylogenetics, morphology and circumscription of Cambessedesieae: a new Neotropical tribe of Melastomataceae. Bot J Linn Soc 190:281–302. https://doi.org/10.1093/botlinnean/boz018
Bochorny T, Bacci LF, Dellinger AS, Michelangeli FA, Goldenberg R, Brito VLG (2021) Connective appendages in Huberia bradeana (Melastomataceae) affect pollen release during buzz pollination. Plant Biol 23:556–563. https://doi.org/10.1111/plb.13244
Bohte A, Drinnan AN (2005) Floral development and systematic position of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (Myrtaceae). Plant Syst Evol 251:53–70. https://doi.org/10.1007/s00606-004-0161-z
Box MS, Glover BJ (2010) A plant developmentalist’s guide to paedomorphosis: reintroducing a classic concept to a new generation. Trends Plant Sci 15:241–246. https://doi.org/10.1016/j.tplants.2010.02.004
Box MS, Rudall PJ (2006) Floral structure and ontogeny in Globba (Zingiberaceae). Plant Syst Evol 258:107–122. https://doi.org/10.1007/s00606-005-0395-4
Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Scientific and Academic Editions, New York, pp 73–113
Buchmann SL, Buchmann MD (1981) Anthecology of Mouriri myrtilloides (Melastomataceae: Memecylae), an oil flower in Panama. Reprod Bot 13:7–24. https://doi.org/10.2307/2388066
Caetano APS, Reginato M, Goldenberg R, Cortez PA, Basso-Alves JP, Michelangeli FA, Carmello-Guerreiro SM, Teixeira SP (2020) Structure and evolution of polysporangiate anthers in Melastomataceae. Perspect Plant Ecol Evol Syst 46:125556. https://doi.org/10.1016/j.ppees.2020.125556
Cao L, Newman MF, Kirchoff BK, Ronse De Craene LP (2019) Developmental evidence helps resolve the evolutionary origins of anther appendages in Globba (Zingiberaceae). Bot J Linn Soc 189:63–82. https://doi.org/10.1093/botlinnean/boy071
Carrucan AE, Drinnan AN (2000) The ontogenetic basis for floral diversity in the Baeckea sub-group (Myrtaceae). Kew Bull 55:593–613. https://doi.org/10.2307/4118778
Claßen-Bockhoff R (2016) The shoot concept of the flower: still up to date? Flora 221:46–53. https://doi.org/10.1016/j.flora.2015.11.012
Claßen-Bockhoff R, Frankenhäuser H (2020) The ‘male flower’ of Ricinus communis (Euphorbiaceae) interpreted as a multi-flowered unit. Front Cell Dev Biol 8:313. https://doi.org/10.3389/fcell.2020.00313
Claßen-Bockhoff R, Crone M, Baikova E (2004) Stamen development in Salvia L.: homology reinvestigated. Int J Plant Sci 165:475–498. https://doi.org/10.1086/386565
Clausing G (2000) Revision of Pachycentria (Melastomataceae). Blumea 45:341–375
Clausing G, Renner SS (2001) Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. Am J Bot 88:486–498. https://doi.org/10.2307/2657114
Cogniaux A (1891) Melastomaceae. In: De Candolle ALPP, De Candolle CP (eds) Monographiæ phanerogamarum. Masson, Paris, pp 1–1256
Cortez PA, Caetano APS, Carmello-Guerreiro SM, Teixeira SP (2014) Elucidating the mechanism of poricidal anther dehiscence in Miconia species (Melastomataceae). Flora 209:571–579. https://doi.org/10.1016/j.flora.2014.07.002
D’Arcy WG (1996) Anther and stamens and what they do. In: D’Arcy WG, Keating RC (eds) The anther: form, function and phylogeny. Cambridge University Press, Cambridge, pp 1–24
Dahlgren R, Thorne RF (1984) The order Myrtales: circumscription, variation, and relationships. Ann Mo Bot Gard 71:633–699. https://doi.org/10.2307/2399158
De Luca PA, Vallejo-Marín M (2013) What’s the “buzz” about? The ecology and evolutionary significance of buzz-pollination. Curr Opin Plant Biol 16:429–435. https://doi.org/10.1016/j.pbi.2013.05.002
Dellinger AS (2013) Floral structure and pollination biology of Axinaea (Melastomataceae). Dissertation, Universität Wien
Dellinger AS, Penneys DS, Staedler YM, Fragner L, Weckwerth W, Schönenberger J (2014) A specialized bird pollination system with a bellows mechanism for pollen transfer and staminal food body rewards. Curr Biol 24:1615–1619. https://doi.org/10.1016/j.cub.2014.05.056
Dellinger AS, Pöllabauer L, Loreti M, Czurda J, Schönenberger J (2019) Testing functional hypotheses on poricidal anther dehiscence and heteranthery in buzz-pollinated flowers. Acta ZooBot Austria 156:197–214
Dellinger AS, Artuso S, Fernández-Fernández DM, Schönenberger J (2021) Stamen dimorphism in bird-pollinated flowers: investigating alternative hypotheses on the evolution of heteranthery. Evolution 75:2589–2599. https://doi.org/10.1111/evo.14260
Drinnan AN, Carrucan AE (2005) The ontogenetic basis for floral diversity in Agonis, Leptospermum and Kunzea (Myrtaceae). Plant Syst Evol 251:71–88. https://doi.org/10.1007/s00606-004-0163-x
Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge
Endress PK (2008) The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Ann Mo Bot Gard 95:101–120. https://doi.org/10.3417/2006190
Endress PK (2012) The immense diversity of floral monosymmetry and asymmetry across angiosperms. Bot Rev 78:345–397. https://doi.org/10.1007/s12229-012-9106-3
Endress PK (2019) The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Bot J Linn Soc 189:201–227. https://doi.org/10.1093/botlinnean/boy083
Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142. https://doi.org/10.2307/2440500
Feng M (2005) Floral morphogenesis and molecular systematics of the family Violaceae. Dissertation, College of Arts and Sciences of Ohio University
Font Quer P (2000) Diccionario de Botánica. Edicions Península, Barcelona
Gavrutenko M, Reginato M, Kriebel R, Nicolas AN, Michelangeli FA (2020) Evolution of floral morphology and symmetry in the Miconieae (Melastomataceae): multiple generalization trends within a specialized family. Int J Plant Sci 181:732–747. https://doi.org/10.1086/708906
Gleason HA (1929) The genus Monochaetum in South America. Am J Bot 16:502–522. https://doi.org/10.2307/2435706
Goldenberg R, Teixeira SP, Martins AB (2003) Anther dehiscence and circumscription of Miconia sect. Hypoxanthus (Melastomataceae). Kew Bull 58:195–203. https://doi.org/10.2307/4119362
Goldenberg R, Penneys DS, Almeda F, Judd WS, Michelangeli FA (2008) Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse Neotropical genus. Int J Plant Sci 169:963–979. https://doi.org/10.1086/589697
Hansen M, Lanes GC, Brito VLG, Leonel ED (2021) Investigation of pollen release by poricidal anthers using mathematical billiards. Phys Rev E 104:034409. https://doi.org/10.1103/physreve.104.034409
Hermann PM, Palser BF (2000) Stamen development in the Ericaceae. I. anther wall, microsporogenesis, inversion, and appendages. Am J Bot 87:934–957. https://doi.org/10.2307/2656993
Jacques-Félix H (1953) Sur quelques Mélastomacées d’Afrique. Bulletin De l’IFAN 15:972–1001
Jacques-Félix H (1981) Observations sur les caracteres staminaux et la classification des Osbeckieae (Melastomataceae) capsulaires africaines. Adansonia 20:405–429
Jacques-Félix H (1995) Histoire des Melastomataceae d’Afrique. Bull Mus Natl Hist Nat, b, Adansonia 16:235–311
Kadereit G (2005) Revision of Plethiandra Hook.F.: a polystaminate, East Asian genus of Melastomataceae. Edinb J Bot 62:127–144. https://doi.org/10.1017/S0960428606000175
Konzmann S, Hilgendorf F, Niester C, Rech AR, Lunau K (2020) Morphological specialization of heterantherous Rhynchanthera grandiflora (Melastomataceae) accommodates pollinator diversity. Plant Biol 22:583–590. https://doi.org/10.1111/plb.13102
Leinfellner W (1958) Zur morphologie des melastomaceen-staubblattes. Oesterr Bot Z 105:44–70. https://doi.org/10.1007/BF01289001
Lersten NR, Curtis JD (1988) Secretory reservoirs (ducts) of two kinds in giant ragweed (Ambrosia trifida; Asteraceae). Am J Bot 75:1313–1323. https://doi.org/10.2307/2444454
Lima JF, Romero R, Simão DG (2019) Polysporangiate anthers in Microlicia D. Don (Melastomataceae Juss.). Feddes Repert 130:9–18. https://doi.org/10.1002/fedr.201800006
Luo Z-L, Zhang D-X, Renner SS (2008) Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin’s division-of-labour hypothesis. Funct Ecol 22:794–800. https://doi.org/10.1111/j.1365-2435.2008.01444.x
Luo Z-L, Hu J, Zhao Z, Zhang D (2016) Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L. Sci Rep 6:31600. https://doi.org/10.1038/srep31600
Matthews JR, Maclachlan CM (1929) The structure of certain poricidal anthers. Trans Bot Soc Edinb 30:104–122. https://doi.org/10.1080/13594862909441486
Maurin O, Anest A, Bellot S et al (2021) A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. Am J Bot 108:1087–1111. https://doi.org/10.1002/ajb2.1699
McDowell EM, Trump BF (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med 100:405–414
Meaders C, Min Y, Freedberg KJ, Kramer EM (2020) Developmental and molecular characterization of novel staminodes in Aquilegia. Ann Bot 126:231–243. https://doi.org/10.1093/aob/mcaa029
Melo LRF, Vasconcelos TNC, Reginato M, Caetano APS, Brito VLG (2021) Evolution of stamen dimetrism in Melastomataceae, a large radiation of pollen flowers. Perspect Plant Ecol Evol Syst 48:125589. https://doi.org/10.1016/j.ppees.2021.125589
Mendoza H, Ramírez B (2006) Guía ilustrada de géneros de Melastomataceae y Memecylaceae de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; Univerisad del Cauca, Bogotá
Mendoza-Cifuentes H, Fernández-Alonso JL (2010) Evaluación de caracteres del cáliz y de los estambres en la tribu Merianieae (Melastomataceae) y definición de homologías. Rev Acad Colomb Cienc Exactas Fis Nat 34:143–172
Michelangeli FA, Goldenberg R (2021) A revision of the florbella group of Miconia (Melastomataceae, Miconieae) with description of three new species. Brittonia 73:85–105. https://doi.org/10.1007/s12228-020-09633-w
Michelangeli FA, Nicolas AN, Morales-Puentes ME, David H (2011) Phylogenetic relationships of Allomaieta, Alloneuron, Cyphostyla, and Wurdastom (Melastomataceae) and the resurrection of the tribe Cyphostyleae. Int J Plant Sci 172:1165–1178. https://doi.org/10.1086/662032
Michelangeli FA, Guimarães PJF, Penneys DS, Almeda F, Kriebel R (2013) Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae). Bot J Linn Soc 171:38–60. https://doi.org/10.1111/j.1095-8339.2012.01295.x
Michelangeli FA, Ulloa Ulloa C, Sosa K (2014) Quipuanthus, a new genus of Melastomataceae from the Foothills of the Andes in Ecuador and Peru. Syst Bot 39:533–540. https://doi.org/10.1600/036364414X680924
Michelangeli FA, Goldenberg R, Almeda F, Judd WS, Bécquer ER, Ocampo G, Ionta GM, Skean JD, Majure LC, Penneys DS (2019) Nomenclatural novelties in Miconia (Melastomataceae: Miconieae). Brittonia 71:82–121. https://doi.org/10.1007/s12228-018-9546-0
Michelangeli FA, Almeda F, Goldenberg R, Penneys DS (2020) A guide to curating New World Melastomataceae collections with a linear generic sequence to world-wide Melastomataceae. Preprints 2020:2020100203. https://doi.org/10.20944/preprints202010.0203.v2
Morley T (1953) The genus Mouriri (Melastomataceae): a sectional revision based on anatomy and morphology. Univ Calif Publ Bot 26:223–312
Müller H (1881) Two kinds of stamens with different functions in the same flower. Nature 24:307–308. https://doi.org/10.1038/027364b0
Nuraliev MS, Sokoloff DD (2014) Floral vascular anatomy as a source of information on evolution of angiosperms: history of study and current views. Bot Z 99:129–158
Nuraliev MS, Sokoloff DD, Oskolski AA (2011) Floral anatomy of asian Schefflera (Araliaceae, Apiales): comparing variation of flower groundplan and vascular patterns. Int J Plant Sci 172:735–762. https://doi.org/10.1086/660189
Oliveira FS (2016) Ecologia da polinização e análise da composição química do óleo floral de duas espécies de Mouriri (Melastomataceae) e sua importância na atração dos visitantes florais. Dissertation, Universidade Federal do Maranhão
Oliveira LC, Nunes CEP, Brito VLG, Caetano APS (2022) Floral oil production in a family dominated by pollen flowers: the case of Macairea radula (Melastomataceae). Flora 288:152008. https://doi.org/10.1016/j.flora.2022.152008
Orlovich DA, Drinnan AN, Ladiges PY (1996) Floral development in the Metrosideros group (Myrtaceae) with special emphasis on the androecium. Telopea 6:689–719. https://doi.org/10.7751/telopea19963031
Orlovich DA, Drinnan AN, Ladiges PY (1999) Floral development in Melaleuca and Callistemon (Myrtaceae). Aust Syst Bot 11:689–710. https://doi.org/10.1071/SB97041
Payer J-B (1857) Traité d’organogenie comparee de la fleur. Librairie de Victor Masson, Paris
Penneys DS, Judd WS (2011) Phylogenetics and morphology in the Blakeeae (Melastomataceae). Int J Plant Sci 172:78–106. https://doi.org/10.1086/657284
Penneys DS, Michelangeli FA, Judd WS, Almeda F (2010) Henrietteeae (Melastomataceae): a new neotropical berry-fruited tribe. Syst Bot 35:783–800. https://doi.org/10.1600/036364410X539862
Penneys DS, Almeda F, Michelangeli FA, Goldenberg R, Martins AB, Fritsch PW (2020) Lithobieae and eriocnemeae: two new neotropical tribes of melastomataceae. Phytotaxa 453:157–178. https://doi.org/10.11646/phytotaxa.453.3.1
Preston JC, Hileman LC, Cubas P (2011) Reduce, reuse, and recycle: developmental evolution of trait diversification. Am J Bot 98:397–403. https://doi.org/10.3732/ajb.1000279
Remizowa MV (2019) One upward, two steps down: order of floral organ initiation. Russ J Dev Biol 50:325–340. https://doi.org/10.1134/s1062360419060080
Renner SS (1989) A survey of reproductive biology in Neotropical Melastomataceae and Memecylaceae. Ann Mo Bot Gard 76:496–518. https://doi.org/10.2307/2399497
Renner SS (1990) A revision of Rhynchanthera (Melastomataceae). Nord J Bot 9:601–630. https://doi.org/10.1111/j.1756-1051.1990.tb00551.x
Renner SS (1993) Phylogeny and classification of the Melastomataceae and Memecylaceae. Nord J Bot 13:519–540. https://doi.org/10.1111/j.1756-1051.1993.tb00096.x
Rocha MJR, Batista JAN, Guimarães PJF, Michelangeli FA (2016) Phylogenetic relationships in the Marcetia alliance (Melastomeae, Melastomataceae) and implications for generic circumscription. Bot J Linn Soc 181:585–609. https://doi.org/10.1111/boj.12429
Ronse De Craene LP (2018) Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. J Plant Res 131:367–393. https://doi.org/10.1007/s10265-018-1021-1
Ronse De Craene LP, Smets EF (1991) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269. https://doi.org/10.1111/j.1095-8339.1991.tb00207.x
Saab GS, Mansano VF, Nogueira A, Maia IC, Bergamo PJ, Paulino JV (2021) A sophisticated case of division of labour in the trimorphic stamens of the Cassia fistula (Leguminosae) flower. AoB Plants 13:plab054. https://doi.org/10.1093/aobpla/plab054
Schönenberger J, Conti E (2003) Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). Am J Bot 90:293–309. https://doi.org/10.3732/ajb.90.2.293
Schumann K (1890) Neue Untersuchungen über den Blüthenanschluss. Wilhelm Engelmann, Leipzig. https://doi.org/10.5962/bhl.title.116350
Sinjushin AA, Ploshinskaya ME (2020) Flower development in Lythrum salicaria L., Cuphea ignea A. DC. and C. hyssopifolia Kunth (Lythraceae): the making of monosymmetry in hexamerous flowers. Wulfenia 27:303–320
Soltis DE, Soltis PS, Endress PK, Chase MW, Manchester SR, Judd WS, Majure LC, Mavrodiev EV (2018) Phylogeny and evolution of the angiosperms, 2nd edn. University of Chicago Press, Chicago. https://doi.org/10.7208/chicago/9780226441757.001.0001
Spencer V, Kim M (2018) Re“CYC”ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol 79:16–26. https://doi.org/10.1016/j.semcdb.2017.08.052
Stein BA, Tobe H (1989) Floral nectaries in Melastomataceae and their systematic and evolutionary implications. Ann Mo Bot Gard 76:519–531. https://doi.org/10.2307/2399498
Telles FJ, Klunk CL, Maia FR, Brito VLG, Varassin IG (2020) Towards a new understanding of the division of labour in heterantherous flowers: the case of Pterolepis glomerata (Melastomataceae). Biol J Linn Soc 131:1–11. https://doi.org/10.1093/biolinnean/blaa107
Toriba T, Ohmori Y, Hirano H-Y (2011) Common and distinct mechanisms underlying the establishment of adaxial and abaxial polarity in stamen and leaf development. Plant Signal Behav 6:430–433. https://doi.org/10.4161/psb.6.3.14494
Triana JJ (1872) Les Mélastomacées. Trans Linn Soc London 28:1–188. https://doi.org/10.1111/j.1096-3642.1871.tb00222.x
Vallejo-Marín M, Silva EM, Sargent RD, Barrett SCH (2010) Trait correlates and functional significance of heteranthery in flowering plants. New Phytol 188:418–425. https://doi.org/10.1111/j.1469-8137.2010.03430.x
van Heel WA (1958) The pistil of Bertolonia marmorata Naud. (Melastomataceae). Blumea 4S:144–148
Varassin IG, Penneys DS, Michelangeli FA (2008) Comparative anatomy and morphology of nectar-producing Melastomataceae. Ann Bot 102:899–909. https://doi.org/10.1093/aob/mcn180
Velloso MSC, Brito VLG, Caetano APS, Romero R (2018) Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham. (Melastomataceae). Acta Bot Bras 32:349–358. https://doi.org/10.1590/0102-33062017abb0358
Veranso-Libalah MC, Stone RD, Fongod AGN, Couvreur TLP, Kadereit G (2017) Phylogeny and systematics of African Melastomateae (Melastomataceae). Taxon 66:584–614. https://doi.org/10.12705/663.5
Versiane AFA, Romero R, Reginato M, Welker CAD, Michelangeli FA, Goldenberg R (2021) Phylogenetic analysis of Microlicieae (Melastomataceae), with emphasis on the re-circumscription of the large genus Microlicia. Bot J Linn Soc 197:35–60. https://doi.org/10.1093/botlinnean/boab011
Vogel S (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards AJ (ed) The pollination of flowers by insects. Academic Press, London, pp 89–96
Vogel S (1997) Remarkable nectaries: structure, ecology, organophyletic perspectives I. Substitutive nectaries. Flora 192:305–333. https://doi.org/10.1016/S0367-2530(17)30798-3
Wanntorp L, Puglisi C, Penneys DS, Ronse-De-Craene LP (2011) Multiplications of floral organs in flowers: a case study in Conostegia (Melastomataceae, Myrtales). In: Wanntorp L, Ronse-De-Craene LP (eds) Flowers on the tree of life systematics association special, vol Series. Cambridge University Press, Cambridge, pp 218–235. https://doi.org/10.1017/CBO9781139013321.009
Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge
Wilson CL (1950) Vasculation of the stamen in the Melastomaceae, with some phyletic implications. Am J Bot 37:431–444. https://doi.org/10.1002/j.1537-2197.1950.tb08193.x
Ziegler A (1925) Beiträge zur Kenntnis des Androeceums und der Samenentwicklung einiger Melastomaceen. Bot Arch 9:398–467
Acknowledgements
This reseach was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants 302806/2019-9 and 310912/2021-0), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ Grants 201.975/2020 and 201.976/2020) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grants 2008/10793-0 and 2011/02701-0). The authors thank Edimárcio da Silva Campos (Botany Laboratory/FCFRP-USP), Adriane Cristina Sarti Sprogis and Stella Maris Fick de Ferraz (SEM Laboratory/IB-Unicamp), José Augusto Maulin (SEM Laboratory/BCMBP, FMRP-USP), and Rodrigo Ferreira Silva (SEM Laboratory/FFCLRP-USP) for technical assistance; Ana Paula de Souza Caetano (UFMT) and Priscila Andressa Cortez (Unifesp) for field assistance and interesting discussions on Melastomataceae; Vinícius Lourenço Garcia de Brito (UFU) for thoughtful comments and suggestions; Ana Flávia Alves Versiane and Ana Paula de Souza Caetano (UFMT) for kindly allowing the use of her photographs shown in Figure 2; Liana C. Capucho and Elettra Greene for English revision, and two anonymous reviewers for comments that helped to improve this article.
Author information
Authors and Affiliations
Contributions
JPBA and SPT conceived the research idea. JPBA performed anatomical procedures and drafted the manuscript. RG contributed to the data analyses. All authors contributed to the writing of the manuscript.
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Basso-Alves, J.P., Goldenberg, R. & Teixeira, S.P. Connective modifications and origin of stamen diversity in Melastomataceae. J Plant Res 135, 659–680 (2022). https://doi.org/10.1007/s10265-022-01405-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10265-022-01405-9
Keywords
- Androecium
- Anther
- Floral development
- Pedoconnective
- Stamen morphology