Andersson U, Heddad M, Adamska I (2003) Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Phys 132:811–820. https://doi.org/10.1104/pp.102.019281
CAS
Article
Google Scholar
Baena-González E, Aro E-M (2002) Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc Lond B Biol Sci 357:1451–1460. https://doi.org/10.1098/rstb.2002.1141
CAS
Article
PubMed
PubMed Central
Google Scholar
Beck J, Lohscheider JN, Albert S, Andersson U, Mendgen KW, Rojas-Stütz MC, Adamska I, Funck D (2017) Small one-helix proteins are essential for photosynthesis in arabidopsis. Front Plant Sci 8:487. https://doi.org/10.3389/fpls.2017.00007
Article
Google Scholar
Chotewutmontri P, Barkan A (2020) Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit. Proc Natl Acad Sci USA 117:21775–21784. https://doi.org/10.1073/pnas.2007833117
CAS
Article
PubMed
PubMed Central
Google Scholar
Chotewutmontri P, Williams-Carrier R, Barkan A (2020) Exploring the link between photosystem ii assembly and translation of the chloroplast psbA mRNA. Plants 9:152. https://doi.org/10.3390/plants9020152
CAS
Article
PubMed Central
Google Scholar
Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
CAS
Article
PubMed
Google Scholar
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511
CAS
Article
PubMed
Google Scholar
Danielsson R, Suorsa M, Paakkarinen V, Albertsson PÅ, Styring S, Aro EM, Mamedov F (2006) Dimeric and monomeric organization of photosystem II: distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem 281:14241–14249. https://doi.org/10.1074/jbc.M600634200
CAS
Article
PubMed
Google Scholar
Furukawa R, Aso M, Fujita T, Akimoto S, Tanaka R, Tanaka A, Yokono M, Takabayashi A (2019) Formation of a PSI–PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. J Plant Res 132:867–880. https://doi.org/10.1007/s10265-019-01138-2
CAS
Article
PubMed
Google Scholar
García-Cerdán JG, Furst AL, McDonald KL, Schünemann D, Francis MB, Niyogi KK (2019) A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proc Natl Acad Sci USA 1817:201903314–201916640. https://doi.org/10.1073/pnas.1903314116
CAS
Article
Google Scholar
Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta - Gen Subj 990:87–92. https://doi.org/10.1016/S0304-4165(89)80016-9
CAS
Article
Google Scholar
Heinz S, Liauw P, Nickelsen J, Nowaczyk M (2016) Analysis of photosystem II biogenesis in cyanobacteria. Biochim Biophys Acta Bioenerg 1857:274–287. https://doi.org/10.1016/j.bbabio.2015.11.007
CAS
Article
Google Scholar
Hey D, Grimm B (2018) ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiol 177:1453–1472. https://doi.org/10.1104/pp.18.00540
CAS
Article
PubMed
PubMed Central
Google Scholar
Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH (2017) SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–D1074. https://doi.org/10.1093/nar/gkw1041
CAS
Article
PubMed
Google Scholar
Järvi S, Suorsa M, Paakkarinen V, Aro E-M (2011) Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochem J 439:207–214. https://doi.org/10.1042/BJ20102155
CAS
Article
Google Scholar
Järvi S, Suorsa M, Aro EM (2015) Photosystem II repair in plant chloroplasts—regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim Biophys Acta Bioenerg 1847:900–909. https://doi.org/10.1016/j.bbabio.2015.01.006
CAS
Article
Google Scholar
Kiss E, Knoppová J, Pascual Aznar G, Pilny J, Yu J, Halada P, Nixon PJ, Sobotka R, Komenda J (2019) A Photosynthesis-specific rubredoxin-like protein is required for efficient association of the D1 and D2 proteins during the initial steps of photosystem II assembly. Plant Cell 31:2019–2258. https://doi.org/10.1105/tpc.19.00155
CAS
Article
Google Scholar
Knoppová J, Sobotka R, Tichý M, Yu J, Konik P, Halada P, Nixon PJ, Komenda J (2014) Discovery of a chlorophyll binding protein complex involved in the early steps of Photosystem II assembly in Synechocystis. Plant Cell 26:1200–1212. https://doi.org/10.1105/tpc.114.123919
CAS
Article
PubMed
PubMed Central
Google Scholar
Knoppová J, Yu J, Janouškovec J, Halada P, Nixon PJ, Whitelegge JP, Komenda J (2021) The photosystem II assembly factor Ycf48 from the Cyanobacterium Synechocystis sp. PCC 6803 is lipidated usingan atypical lipobox sequence. Int J Mol Sci 22:3733. https://doi.org/10.3390/ijms22073733
CAS
Article
PubMed
PubMed Central
Google Scholar
Komenda J, Sobotka R (2016) Cyanobacterial high-light-inducible proteins—protectors of chlorophyll-protein synthesis and assembly. Biochim Biophys Acta Bioenerg 1857:288–295. https://doi.org/10.1016/j.bbabio.2015.08.011
CAS
Article
Google Scholar
Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251. https://doi.org/10.1016/j.pbi.2012.01.017
CAS
Article
PubMed
Google Scholar
Li Y, Liu B, Zhang J, Kong F, Zhang L, Meng H, Li W, Rochaix JD, Li D, Peng L (2019) OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol 179:195–208. https://doi.org/10.1104/pp.18.01231
CAS
Article
PubMed
Google Scholar
Liang Z, Zhu N, Mai KK, Liu ZY, Tzeng D, Osteryoung KW, Zhong S, Staehelin LA, Kang BH (2018) Thylakoid-bound polysomes and a dynamin-related protein, FZL, mediate critical stages of the linear chloroplast biogenesis program in greening Arabidopsis cotyledons. Plant Cell 30:1476–1495. https://doi.org/10.1105/tpc.17.00972
CAS
Article
PubMed
PubMed Central
Google Scholar
Link S, Engelmann K, Meierhoff K, Westhoff P (2012) The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. Plant Phys 160:2202–2218. https://doi.org/10.1104/pp.112.205104
CAS
Article
Google Scholar
Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. https://doi.org/10.1038/nature02373
CAS
Article
PubMed
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:405–498. https://doi.org/10.1006/meth.2001.1262
CAS
Article
Google Scholar
Llansola-Portoles MJ, Sobotka R, Kish E, Shukla MK, Pascal AA, Polívka T, Robert B (2017) Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection. J Biol Chem 292:1396–1403. https://doi.org/10.1074/jbc.M116.753723
CAS
Article
PubMed
Google Scholar
Lu Y (2016) Identification and roles of photosystem ii assembly, stability, and repair factors in Arabidopsis. Front Plant Sci 7:209. https://doi.org/10.3389/fpls.2016.00168
Article
Google Scholar
McDermott JJ, Watkins KP, Williams-Carrier R, Barkan A (2019) Ribonucleoprotein capture by in vivo expression of a designer pentatricopeptide repeat protein in Arabidopsis. Plant Cell 31:1723–1733. https://doi.org/10.1105/tpc.19.00177
CAS
Article
PubMed
PubMed Central
Google Scholar
Mimuro M, Yamazaki I, Itoh S, Tamai N, Satoh K (1988) Dynamic fluorescence properties of Dl-D2-cytochrome b-559 complex isolated from spinach chloroplasts: analysis by means of the time-resolved fluorescence spectra in picosecond time range. Biochim Biophys Acta Bioenerg 933:478–486. https://doi.org/10.1016/0005-2728(88)90083-7
CAS
Article
Google Scholar
Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta Bioenerg 1767:327–334. https://doi.org/10.1016/j.bbabio.2007.02.012
CAS
Article
Google Scholar
Myouga F, Takahashi K, Tanaka R, Nagata N, Kiss AZ, Funk C, Nomura Y, Nakagami H, Jansson S, Shinozaki K (2018) Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. Plant Physiol 176:2277–2291. https://doi.org/10.1104/pp.17.01782
CAS
Article
PubMed
PubMed Central
Google Scholar
Nelson N, Yocum C (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565. https://doi.org/10.1146/annurev.arplant.57.032905.105350
CAS
Article
PubMed
Google Scholar
Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64:609–635. https://doi.org/10.1146/annurev-arplant-050312-120124
CAS
Article
PubMed
Google Scholar
Niedzwiedzki DM, Tronina T, Liu H, Staleva H, Komenda J, Sobotka R, Blankenship RE, Polívka T (2016) Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. Biochim Biophys Acta Bioenerg 1857:1430–1439. https://doi.org/10.1016/j.bbabio.2016.04.280
CAS
Article
Google Scholar
Nishioka K, Kato Y, Ozawa SI, Takahashi Y, Sakamoto W (2021) Phos-tag-based approach to study protein phosphorylation in the thylakoid membrane. Photosyn Res 147:107–124. https://doi.org/10.1007/s11120-020-00803-1
CAS
Article
Google Scholar
Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46. https://doi.org/10.1111/j.1399-3054.2011.01457.x
CAS
Article
PubMed
Google Scholar
Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotech 98:8777–8796. https://doi.org/10.1007/s00253-014-6020-0
CAS
Article
Google Scholar
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J (2016) Functional update of the auxiliary proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in maintenance and assembly of PSII. Front Plant Sci 7:423. https://doi.org/10.3389/fpls.2016.00423
Article
PubMed
PubMed Central
Google Scholar
Psencik J, Hey D, Grimm B, Lokstein H (2020) Photoprotection of photosynthetic pigments in plant one-helix protein 1/2 heterodimers. J Phys Chem Lett 11:9387–9392. https://doi.org/10.1021/acs.jpclett.0c02660
CAS
Article
PubMed
Google Scholar
Puthiyaveetil S, Tsabari O, Lowry T, Lenhert S, Lewis RR, Reich Z, Kirchhoff H (2014) Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc Natl Acad Sci USA 111:15839–15844. https://doi.org/10.1073/pnas.1413739111
CAS
Article
PubMed
PubMed Central
Google Scholar
Schult K, Meierhoff K, Paradies S, Töller T, Wolff P, Westhoff P (2007) The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. Plant Cell 19:1329–1346. https://doi.org/10.1105/tpc.106.042895
CAS
Article
PubMed
PubMed Central
Google Scholar
Staleva H, Komenda J, Shukla MK, Šlouf V, Kaňa R, Polívka T, Sobotka R (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol 11:287–291. https://doi.org/10.1038/nchembio.1755
CAS
Article
PubMed
Google Scholar
Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, Li M (2017) Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357:815–820. https://doi.org/10.1126/science.aan0327
CAS
Article
PubMed
Google Scholar
Suorsa M, Rantala M, Danielsson R, Järvi S, Paakkarinen V, Schröder WP, Styring S, Mamedov F, Aro EM (2014) Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. Biochim Biophys Acta Bioenerg 1837:1463–1471. https://doi.org/10.1016/j.bbabio.2013.11.014
CAS
Article
Google Scholar
Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60. https://doi.org/10.1038/nature09913
CAS
Article
PubMed
Google Scholar
Walters RG, Shephard F, Rogers JJM, Rolfe SA, Horton P (2003) Identification of mutants of arabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiol 131:472–481. https://doi.org/10.1104/pp.015479
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang L, Kim C, Xu X, Piskurewicz U, Dogra V, Singh S, Mahler H, Apel K (2016) Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci U S A 113:E3792–E3800. https://doi.org/10.1073/pnas.1603562113
CAS
Article
PubMed
PubMed Central
Google Scholar
Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590. https://doi.org/10.1111/j.1467-7652.2005.00149.x
CAS
Article
PubMed
Google Scholar
Williams-Carrier R, Brewster C, Belcher SE, Rojas M, Chotewutmontri P, Ljungdahl S, Barkan A (2019) The Arabidopsis pentatricopeptide repeat protein LPE1 and its maize ortholog are required for translation of the chloroplast psbJ RNA. Plant J 99:56–66. https://doi.org/10.1111/tpj.14308
CAS
Article
PubMed
Google Scholar
Wu HY, Liu MS, Lin TP, Cheng YS (2011) Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen. Plant Phys 157:1015–1025. https://doi.org/10.1104/pp.111.184739
CAS
Article
Google Scholar
Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675. https://doi.org/10.1038/ncomms7675
CAS
Article
PubMed
Google Scholar
Yu J, Knoppová J, Michoux F, Bialek W, Cota E, Shukla MK, Strašková A, Aznar GP, Sobotka R, Komenda J, Murray JW, Nixon PJ (2018) Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proc Natl Acad Sci USA 115:E7824–E7833. https://doi.org/10.1073/pnas.1800609115
CAS
Article
PubMed
PubMed Central
Google Scholar