Skip to main content

Gynoecium structure in Sapindales and a case study of Trichilia pallens (Meliaceae)

Abstract

Sapindales is a monophyletic order within the malvid clade of rosids. It represents an interesting group to address questions on floral structure and evolution due to a wide variation in reproductive traits. This review covers a detailed overview of gynoecium features, as well as a new structural study based on Trichilia pallens (Meliaceae), to provide characters to support systematic relationships and to recognize patterns of variations in gynoecium features in Sapindales. Several unique and shared characteristics are identified. Anacrostylous and basistylous carpels may have evolved multiple times in Sapindales, while ventrally bulging carpels are found in pseudomonomerous Anacardiaceae. Different from previous studies, similar gynoecium features, including degree of syncarpy, ontogenetic patterns, and PTTT structure, favors a closer phylogenetic proximity between Rutaceae and Simaroubaceae, or Rutaceae and Meliaceae. An apomorphic tendency for the order is that the floral apex is integrated in the syncarpous or apocarpous gynoecium, but with different length and shape among families. Nitrariaceae shares similar stigmatic features and PTTT structure with many Sapindaceae. As the current position of both families in Sapindales is uncertain, floral features should be investigated more extensively in future studies. Two different types of gynophore were identified in the order: either derived from intercalary growth below the gynoecium as a floral internode, or by extension of the base of the ovary locules as part of the gynoecium. Sapindales share a combination of gynoecial characters but variation is mostly caused by different degrees of development of the synascidiate part relative to the symplicate part of carpels, or the latter part is absent. Postgenital fusion of the upper part of the styles leads to a common stigma, while stylar lobes may be separate. Due to a wide variation in these features, a new terminology regarding fusion is proposed to describe the gynoecium of the order.

This is a preview of subscription content, access via your institution.

Fig. 1

(modified from Bachelier and Endress (2009); i′ modified from Bachelier et al. (2011) and b modified from Bachelier and Endress (2008)). Asterisks: floral apex, indicated only in longitudinal schemes

Fig. 2

modified from Ramp (1988); ib, iii″ from Nair and Joshi (1958); iii‴ from Bachelier and Endress (2009). Asterisks: floral apex, indicated only in longitudinal schemes

Fig. 3

Modified from Pirani 1987 (a) and Devecchi and Pirani 2020 (b). Photographs, J.H.L.El Ottra

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Modified from Pirani (1992) (a), Aubréville (1962) (b), and Acevedo-Rodriguez and Somner (2018) (c)

Notes

  1. In acrostylous carpel the style base overtops the ovary apex (i.e., the style base is “the apical continuation of the ovary”; Weberling 1989, Fig. 4a), while in anacrostylous carpels the style base (style “insertion”, Weberling, 1989) is at a more basal level than the ovary apex (e.g., Online Resource 4, a).

  2. Some Sapindaceae with one conspicuous main median dorsal bundle and a triangular-shaped ovary have a dorsal wing in the same region (Dodonaea, Paoli and Sarti 2008), or at least a dorsal rib in the anthetic gynoecium, that will develop later into the wings of fruitlets (many Paullinieae: Weckerle and Rutishauser 2005). Differently, other Sapindaceae with similar ovary shape (Koelreuteria), but with deep dehiscence lines (furrows) in the median region, dorsal bundles are absent (Avalos et al. 2019; Cao et al. 2018; Ronse De Craene et al. 2000).

References

  • Abbe EC, Earle TT (1940) Inflorescence, floral anatomy and morphology of Leitneria floridana. Bull Torrey Bot Club 67:173–193

    Google Scholar 

  • Acevedo-Rodríguez P, van Welzen PC, Adema F, van der Ham RWJM (2011) Sapindaceae. In: Kubitzki K (ed) Flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. The families and genera of flowering plants. Springer, Berlin, pp 357–407

    Google Scholar 

  • Acevedo-Rodriguez P, Somner GV (2018) New species of Paullinia (Sapindaceae) from continental tropical America. Phytokeys 114:95–113. https://doi.org/10.3897/phytokeys.114.29351

    Article  Google Scholar 

  • Alves GN, El Ottra JHL, Devecchi MF, Demarco D, Pirani JR (2017) Structure of the flower of Simaba (Simaroubaceae) and its anatomical novelties. Bot J Linn Soc 183:162–176. https://doi.org/10.1111/boj.12486

    Article  Google Scholar 

  • Alves GGN, Fonseca LH, Devecchi MF, El Ottra JHL, Demarco D, Pirani JR (2022) What reproductive traits have to tell us about the evolution and diversification in the Tree-of-Heaven family, Simaroubaceae. Bras J Bot. https://doi.org/10.1007/s40415-021-00768-y

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  • Appelhans MS, Bayly MJ, Heslewood MM, Groppo M, Verboom AG, Foster PI, Kallunki JA, Duretto MF (2021) A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers. Taxon. https://doi.org/10.1002/tax.12543

    Article  Google Scholar 

  • Aubréville A (1962) Flore du Gabon 3. Irvingiacées, Simaroubacées, Burséracées. Muséum d’Histoire Naturelle, Paris

    Google Scholar 

  • Avalos AA, Lattar EC, Galati BG, Ferrucci MS (2017) Nectary structure and ultrastructure in two floral morphs of Koelreuteria elegans subsp. formosana (Sapindaceae). Flora 226:29–37. https://doi.org/10.1016/j.flora.2016.11.003

    Article  Google Scholar 

  • Avalos AA, Zini LM, Ferrucci MS, Lattar EC (2019) Anther and gynoecium structure and development of male and female gametophytes of Koelreuteria elegans subsp. formosana (Sapindaceae): phylogenetic implications. Flora 255:98–109. https://doi.org/10.1016/j.flora.2019.04.003

    Article  Google Scholar 

  • Bachelier JB, Endress PK (2007) Development of inflorescences, cupules and flowers in Amphipterygium and comparison with Pistacia (Anacardiaceae). Int J Plant Sci 168:1237–1253. https://doi.org/10.1086/521795

    Article  Google Scholar 

  • Bachelier JB, Endress PK (2008) Floral structure of Kirkia (Kirkiaceae) and its position in Sapindales. Ann Bot 102:539–550. https://doi.org/10.1093/aob/mcn139

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachelier JB, Endress PK (2009) Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. Bot J Linn Soc 159:499–571. https://doi.org/10.1111/j.1095-8339.2009.00959.x

    Article  Google Scholar 

  • Bachelier JB, Endress PK, Ronse De Craene LP (2011) Comparative floral structure and development of Nitrariaceae (Sapindales) and systematic implications. In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 180–215

    Google Scholar 

  • Beurton C (1994) Gynoecium and perianth in Zanthoxylum s.l. (Rutaceae). Plant Syst Evol 89:165–191

    Google Scholar 

  • Boesewinkel FD (1997) Seed structure and phylogenetic relationships of the Geraniales. Bot Jahrb Syst 119:277–291

    Google Scholar 

  • Bull-Hereñu K, Claßen-Bockhoff R, Ronse De Craene LP (2016) The FLO-RE-S network for contemporary studies in flower structure and biology. Flora 221:1–3. https://doi.org/10.1016/j.flora.2016.02.005

    Article  Google Scholar 

  • Cao LM, Xia NH (2009) Floral organogenesis of Delavaya toxocarpa (Sapindaceae; Sapindales). J Syst Evol 47:237–244

    Google Scholar 

  • Cao LM, Xia NH, Deng YF (2006) Floral organogenesis of Handeliodendron bodinieri (Sapindaceae) and its systematic implications. Acta Phytotax Sin 44:393–400

    Google Scholar 

  • Cao LM, Ronse De Craene LP, Wang Z, Wang Y (2017) The floral organogenesis of Eurycorymbus cavaleriei (Sapindaceae) and its systematic implications. Phytotaxa 297:234–244. https://doi.org/10.1111/j.1759-6831.2009.00023.x

    Article  Google Scholar 

  • Cao LM, Liu J, Lin Q, Ronse De Craene LP (2018) The floral organogenesis of Koelreuteria bipinnata and its variety K. bipinnata var. integrifolia (Sapindaceae): evidence of floral constraints on the evolution of monosymmetry. Plant Syst Evol 304:923–935. https://doi.org/10.1007/s00606-018-1519-y

    Article  Google Scholar 

  • Capuron R (1961) Contributions à l’étude de la flore forestière de Madagascar III. Sur quelques plantes ayant contribué au peuplement de Madagascar. Adansonia 1:65–92

    Google Scholar 

  • Caris P, Smets E, De Coster K, Ronse De Craene LP (2006) Floral ontogeny of Cneorum tricoccon L. (Rutaceae). Plant Syst Evol 257:223–232. https://doi.org/10.1007/s00606-005-0373-x

    Article  Google Scholar 

  • Carlquist S (1969) Toward acceptable evolutionary interpretations of floral anatomy. Phytomorphology 19:332–362

    Google Scholar 

  • Clayton JW (2011) Simaroubaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae, vol 10. Springer, Berlin, pp 408–423

    Google Scholar 

  • Copeland HF (1961) Observations on the reproductive structure of Anacardium occidentale. Phytomorphology 11:315–325

    Google Scholar 

  • Daly DC, Harley MM, Martínez-Habibe MC, Weeks A (2011) Burseraceae. In: Kubitzki K (ed) The families and genera of vascular plants. Flowering plants: Eudicots: Sapindales, Cucurbitales, Myrtaceae, vol 10. Springer, Berlin, pp 76–104

    Google Scholar 

  • Devecchi MF, Pirani JR (2020) Flora Do Espírito Santo: Simaroubaceae. Rodriguésia 71:e02942018. https://doi.org/10.1590/2175-7860202071116

    Article  Google Scholar 

  • Devecchi MF, Thomas WW, Plunkett GM, Pirani JR (2018) Testing the monophyly of Simaba (Simaroubaceae): evidence from five molecular regions and morphology. Mol Phylogenet Evol 120:63–82. https://doi.org/10.1016/j.ympev.2017.11.024

    Article  PubMed  Google Scholar 

  • El Ottra JHL, Pirani JR, Endress PK (2013) Fusion within and between whorls of floral organs in Galipeinae (Rutaceae): structural features and evolutionary implications. Ann Bot 111:821–837

    PubMed  PubMed Central  Google Scholar 

  • El Ottra JHL, Demarco D, Pirani JR (2019) Comparative floral structure and evolution in Galipeinae (Galipeeae: Rutaceae) and its implications at different systematic levels. Bot J Linn Soc 191:30–101. https://doi.org/10.1093/aob/mct039

    Article  Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Endress PK (2003) What should a “complete” morphological phylogenetic anaylsis entail? In: Stuessy TF, Mayer V, Hörandl E (eds) Deep morphology: towards a renaissance of morphology in plant systematics. ARG Gantner, Liechtenstein, pp 131–164

    Google Scholar 

  • Endress PK (2010) Flower structure and trends in evolution in eudicots and their major subclades. Ann Missouri Bot Gard 97:541–583. https://doi.org/10.3417/2009139

    Article  Google Scholar 

  • Endress PK (2014) Multicarpellate gynoecia in angiosperms: occurrence, development, organization and architectural constraints. Bot J Linn Soc 174:1–43. https://doi.org/10.1111/boj.12099

    Article  Google Scholar 

  • Endress PK (2015) Patterns of angiospermy development before carpel sealing across living angiosperms: diversity, and morphological and systematic aspects. Bot J Linn Soc 178:556–591. https://doi.org/10.1111/boj.12294

    Article  Google Scholar 

  • Endress PK (2019) The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Bot J Linn Soc 189:201–227. https://doi.org/10.1093/botlinnean/boy083

    Article  Google Scholar 

  • Endress PK, Matthews ML (2006) First steps towards a floral structural characterization of the major rosid subclades. Plant Syst Evol 260:223–251. https://doi.org/10.1007/s00606-006-0444-7

    Article  Google Scholar 

  • Endress PK, Matthews ML (2012) Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Syst Evol 298:257–276. https://doi.org/10.1007/s00606-011-0576-2

    Article  Google Scholar 

  • Endress PK, Jenny M, Fallen ME (1983) Convergent elaboration of apocarpous gynoecia in higher advanced angiosperms (Sapindales, Malvales, Gentianales). Nord J Bot 3:293–300

    Google Scholar 

  • Engler A (1931) Rutaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, 2nd edn, 19a. Engelmann, Leipzig, pp 187–359

    Google Scholar 

  • Gadek PA, Fernando ES, Quinn CJ, Hoot SB, Terrazas T, Sheahan MC, Chase MW (1996) Sapindales: molecular delimitation and infraordinal groups. Am J Bot 83:802–811

    Google Scholar 

  • Gallant JB, Kemp JR, Lacroix CR (1998) Floral development of dioecious staghorn sumac, Rhus hirta (Anacardiaceae). Int J Plant Sci 159:539–549

    Google Scholar 

  • Gama RL, Muellner-Riehl AN, Demarco D, Pirani JR (2021a) Evolution of reproductive traits in the mahagony family (Meliaceae). J Syst Evol 59:21–43

    Google Scholar 

  • Gama RL, El Ottra JHL, Demarco D, Pirani JR (2021b) Gynodioecy in Trichilia (Meliaceae) and a peculiar case of male sterility due to tapetal necrotic cell death. Bras J Bot. https://doi.org/10.1007/s40415-021-00746-4.10.1111/jse.12572

    Article  Google Scholar 

  • Gonzalez AM (2013) Morfología y anatomía floral de Schinopsis balansae (Anacardiaceae). Rev Fac Cienc Agrar Univ Nac Cuyo 45:101–113

    Google Scholar 

  • Gonzalez AM (2016) Floral structure, development of the gynoecium, and embryology in Schinopsis balansae Engler (Anacardiaceae) with particular reference to aporogamy. Int J Plant Sci 177:326–338. https://doi.org/10.1086/684847

    Article  Google Scholar 

  • González VV, Solís SM, Ferrucci MS (2017) Embryological studies of Magonia pubescens (Dodonaeaeae, Sapindaceae): development of male and female gametophytes in both floral morphs and its phylogenetic implications. Aust Syst Bot 30:279–289. https://doi.org/10.1071/SB17021

    Article  Google Scholar 

  • Gouvêa CF, Dornelas MC, Rodriguez APM (2008a) Floral development in the tribe Cedreleae (Meliaceae, sub-family Swietenioideae): Cedrela and Toona. Ann Bot 101:39–48. https://doi.org/10.1093/aob/mcm279

    Article  PubMed  Google Scholar 

  • Gouvêa CF, Dornelas MC, Martinelli AP (2008b) Characterization of unisexual flower development in the endangered mahogany tree Swietenia macrophylla King. (Meliaceae). Bot J Linn Soc 156:529–535. https://doi.org/10.1111/j.1095-8339.2007.00758.x

    Article  Google Scholar 

  • Groppo M, Pirani JR, Salatino MLF, Blanco SR, Kallunki JA (2008) Phylogeny of Rutaceae based on two noncoding regions from cpDNA. Am J Bot 95:985–1005. https://doi.org/10.3732/ajb.2007313

    CAS  Article  PubMed  Google Scholar 

  • Groppo M, Kallunki JA, Pirani JR, Antonelli A (2012) Chilean Pitavia more closely related to Oceania and Old World Rutaceae than Neotropical groups: evidence from two cpDNA non–coding regions, with a new subfamilial classification of the family. PhytoKeys 19:9–29. https://doi.org/10.3897/phytokeys.19.3912

    Article  Google Scholar 

  • Guédès M (1973) Carpel morphology and axis-sharing in syncarpy in some Rutaceae, with further comments on “New Morphology.” Bot J Linn Soc 66:55–74

    Google Scholar 

  • Gut B (1966) Beiträge zur Morphologie des Gynoeceums und der Blütenachse einiger Rutaceen. Bot Jahrb Syst 85:151–247

    Google Scholar 

  • Hanf M (1936) Vergleichende und entwicklungsgeschichtliche Untersuchungen über Morphologie und Anatomie der Griffel und Griffeläste. Beih Bot Centralbl A54:99–141

    Google Scholar 

  • Harms H (1940) Meliaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, 2nd edn, 19bI. Engelmann, Leipzig, pp 1–172

    Google Scholar 

  • Hartl D (1957) Struktur und Herkunft des Endokarps der Rutaceen. Beitr Biol Pfl 34:35–49

    Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Hormaza JI, Polito VS (1996) Pistillate and staminate flower development in Dioecious Pistacia vera (Anacardiaceae). Am J Bot 83:759–766

    Google Scholar 

  • Jogesh T, Overson RP, Raguso RA, Skogen KA (2017) Herbivory as an important selective force in the evolution of floral traits and pollinator shifts. AoB Plants 9:plw088. https://doi.org/10.1093/aobpla/plw088

    Article  Google Scholar 

  • Johri BM, Ahuja MR (1957) A contribution to the floral morphology and embryology of Aegle marmelos Correa. Phytomorphology 7:10–24

    Google Scholar 

  • Knuth R (1912) Geraniaceae. In: Engler A (ed) Das Pflanzenreich: regni vegetablilis conspectus. Engelmann, Leipzig, pp 546–549

    Google Scholar 

  • Koenen EJM, Clarkson JJ, Pennington TD, Chatrou LW (2015) Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytol 207:327–339. https://doi.org/10.1111/nph.13490

    Article  PubMed  Google Scholar 

  • Kubitzki K (2011) Introdution to Sapindales. The Families and Genera of vascular plants: flowering plants: Eudicots: Sapindales, Cucurbitales, Myrtaceae, vol 10. Springer, Berlin, pp 1–3

    Google Scholar 

  • Kubitzki K, Kallunki JA, Duretto M, Wilson P (2011) Rutaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Springer, Heildelberg, pp 276–356

    Google Scholar 

  • Lal S (1994) A contribution to the floral anatomy of Cedreleae (Meliaceae). Feddes Repert 105:449–455

    Google Scholar 

  • Langran X, Vassiliades DD (2008) Biebersteiniaceae. In: Wu ZY, Raven PH, Hong, DY (eds). Flora of China: (Oxalidaceae through Aceraceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. http://flora.huh.harvard.edu/china/mss/volume11/index.htm. Acessed 5 Dec 2020

  • Leinfellner W (1950) Der Bauplan des synkarpen Gynoeceums. Oesterr Bot Z 97:403–436

    Google Scholar 

  • Leins P (1967) Die frühe Blütenentwicklung von Aegle marmelos (Rutaceae). Ber Deutsch Bot Ges 80:320–325

    Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Lima HA, Somner GV, Giulietti AM (2016) Duodichogamy and sex lability in Sapindaceae: the case of Paullinia weinmanniifolia. Plant Syst Evol 302:109–120. https://doi.org/10.1007/s00606-015-1247-5

    Article  Google Scholar 

  • Lin N, Moore MJ, Deng T, Sun H, Yang L-S, Sun Y-X, Wang H-C (2018) Complete plastome sequencing from Toona (Meliaceae) and phylogenomic analyses within Sapindales. App Plant Sci 6:e1040. https://doi.org/10.1002/aps3.1040

    Article  Google Scholar 

  • Lord EM, Eckard KJ (1985) Shoot development in Citrus sinensis L. (Washington navel orange) I. Floral and Inflorescence Ontogeny. Bot Gaz 146:320–326

    Google Scholar 

  • Mabberley DJ (2011) Meliaceae. In: Kubitzki K (ed) Flowering plants: Eudicots: Sapindales, Cucurbitales, Myrtaceae: the families and genera of flowering plants. Springer, Berlin, pp 185–211

    Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453. https://doi.org/10.1111/nph.13264

    Article  PubMed  Google Scholar 

  • Matthews ML, Endress PK (2005) Comparative floral structure and systematics in Crossosomatales (Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, Strasburgeriaceae). Bot J Linn Soc 147:1–46. https://doi.org/10.1111/j.1095-8339.2005.00347.x

    Article  Google Scholar 

  • Matthews ML, Amaral MCE, Endress PK (2012) Comparative floral structure and systematics in Ochnaceae s.l. (Ochnaceae, Quiinaceae, Medusagynaceae; Malpighiales). Bot J Linn Soc 170:299–392. https://doi.org/10.1111/j.1095-8339.2012.01299.x

    Article  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365. https://doi.org/10.1111/j.1461-0248.2006.00975.x

    Article  PubMed  Google Scholar 

  • Morton MC, Telmer C (2014) New subfamily classification for Rutaceae. Ann Missouri Bot Gard 99:620–641. https://doi.org/10.3417/2010034

    Article  Google Scholar 

  • Moore JA (1936) Floral anatomy and phylogeny in the Rutaceae. New Phytol 35:318–322

  • Muellner AN (2011) Biebersteiniaceae. In: Kubitzki K (ed) The families and genera of vascular plants: flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtales, vol 10. Springer, Berlin, pp 72–75

    Google Scholar 

  • Muellner AN, Samuel R, Chase MW, Coleman A, Stuessy TF (2008) An evaluation of tribes and of generic relationships in Melioideae (Meliaceae) based on nuclear ITS ribosomal DNA. Taxon 57:98–106. https://doi.org/10.2307/25065951

    Article  Google Scholar 

  • Muellner-Riehl AN, Weeks A, Clayton JW, Buerki S, Nauheimer L, Chiang YC, Cody S, Pell SK (2016) Molecular phylogenetics and molecular clock dating of Sapindales based on plastid rbcL, atpB and trnL-trnF DNA sequences. Taxon 65:1019–1036. https://doi.org/10.12705/655.5

    Article  Google Scholar 

  • Murty YS, Gupta S (1978a) Morphological studies in Meliaceae. II. A reinvestigation of floral anatomy of members of Swietenieae and Trichilieae. Proc Indian Acad Sci B 87:55–64

    Google Scholar 

  • Murty YS, Gupta S (1978b) Morphological studies in Meliaceae. III. A reinvestigation of floral anatomy of Azadirachta and Melia. J Indian Bot Soc 57:195–204

    Google Scholar 

  • Nair NC (1958) Studies on Meliaceae 3. Floral morphology and embryology of Sandoricum indicum Cav. Phyton (argentina) 10:145–151

    Google Scholar 

  • Nair NC (1959a) Studies on Meliaceae 1. Floral morphology and embryology of Naregamia alata W. & A. J Indian Bot Soc 38:353–366

    Google Scholar 

  • Nair NC (1959b) Studies on Meliaceae 2. Floral morphology and embryology of Melia azedarach Linn.: a reinvestigation. J Indian Bot Soc 38:367–378

    Google Scholar 

  • Nair NC (1962) Studies on Meliaceae. V. Morphology and anatomy of the flower of the tribes Melieae, Trichilieae and Swietenieae. J Indian Bot Soc 41:226–242

    Google Scholar 

  • Nair NC (1963) Studies on Meliaceae. VI. Morphology and anatomy of the flower of the tribe Cedreleae and discussion on the floral anatomy of the family. J Indian Bot Soc 42:177–189

    Google Scholar 

  • Nair NC, Joseph TC (1957) Floral morphology and embryology of Samadera indica. Bot Gaz 119:104–115

    Google Scholar 

  • Nair NC, Joshi RK (1958) Floral morphology of some members of the Simaroubaceae. Bot Gaz 120:88–99

    Google Scholar 

  • Nair NC, Kanta K (1961) Studies in Meliaceae 4. Floral morphology and embryology of Azadirachta indica A. Juss.: a reinvestigation. J Indian Bot Soc 40:382–396

    Google Scholar 

  • Nair NC, Sukumaran NP (1960) Floral morphology and embryology of Brucea amarissima. Bot Gaz 121:175–185

    Google Scholar 

  • Narayana LL (1958) Floral anatomy of Meliaceae—I. J Indian Bot Soc 37:365–374

    Google Scholar 

  • Narayana LL (1959) Floral anatomy of Meliaceae—II. J Indian Bot Soc 38:288–295

    Google Scholar 

  • Narayana LL (1960a) Studies in Burseraceae—I. J Indian Bot Soc 39:204–209

    Google Scholar 

  • Narayana LL (1960b) Studies in Burseraceae-II. J Indian Bot Soc 39:402–409

    Google Scholar 

  • Narayana LL, Sayeeduddin M (1958) Floral anatomy of Simaroubaceae—I. J Indian Bot Soc 37:517–522

    Google Scholar 

  • Owens SJ (1989) Stigma, style, pollen, and the pollen-stigma interactions in Caesalpinioideae. Monogr Syst Bot Missouri Bot Gard 29:113–126

    Google Scholar 

  • Paoli AAS, Sarti J (2008) Morfoanatomia e desenvolvimento de frutos e sementes de Dodonea viscosa (L.) Jacquin. Rev Bras Sementes 30:33–42. https://doi.org/10.1590/S0101-31222008000200005

    Article  Google Scholar 

  • Paschoalini GO, Pirani JR, Demarco D, El Ottra JHL (2022) Revisiting pericarp structure, dehiscence and seed dispersal in Galipeeae (Zanthoxyloideae, Rutaceae). Bras J Bot. https://doi.org/10.1007/s40415-021-00779-9

    Article  Google Scholar 

  • Peck CJ, Lersten NR (1991a) Gynoecial ontogeny and morphology, and pollen tube pathway in black maple, Acer saccharum ssp. nigrum (Aceraceae). Am J Bot 78:247–259

    Google Scholar 

  • Peck CJ, Lersten NR (1991b) Papillate stigmas in Acer (Aceraceae). Bull Torrey Bot Club 118:20–23

    Google Scholar 

  • Pell SK, Mitchell JD, Miller AJ, Lobova TA (2011) Anacardiaceae. In: Kubitzki K (ed) Flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. The families and genera of flowering plants. Springer, Berlin, pp 7–50

    Google Scholar 

  • Pennington TD, Styles BT (1975) A generic monograph of the Meliaceae. Blumea 22:419–540

    Google Scholar 

  • Perdiz RO, Amorim AM, Ferrucci MS (2012) Paullinia unifoliolata, a remarkable new species of Sapindaceae from the Atlantic Forest of southern Bahia, Brazil. Brittonia 64:114–118. https://doi.org/10.1007/s12228-011-9213-1

    Article  Google Scholar 

  • Pirani JR (1987) Flora da Serra do Cipó, Minas Gerais: Simaroubaceae. Bol Bot Univ São Paulo 9:219–226

    Google Scholar 

  • Pirani JR (1992) Flora da Serra do Cipó, Minas Gerais: Meliaceae. Bol Bot Univ São Paulo 13:219–234

    Google Scholar 

  • Pirani JR, El Ottra JHL, Menezes NL (2010) Morfoanatomia de flores de cinco espécies de Galipea Aubl. e seu significado na evolução de flores tubulosas entre as Rutaceae neotropicais. Rev Bras Bot 33:301–318. https://doi.org/10.1590/S0100-84042010000200011

    Article  Google Scholar 

  • Ramp E (1988) Struktur, Funktion und systematische Bedeutung des Gynoeciums bei den Rutaceae und Simaroubaceae. Doctoral dissertation, University of Zurich

  • Rodrigues DM, Oliveira JMS, Mariath JE (2004) Comparação de desenvolvimento inicial do rudimento seminal em Schinus terebinthifolius Raddi e Schinus polygamus (Cav.) Cabr. (Anacardiaceae). Revista De Iniciação Científica Da ULBRA 3:61–72

    Google Scholar 

  • Ronse De Craene LP (2010) Floral diagrams. An aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Ronse De Craene LP (2018) Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physicodynamic perspective. J Plant Res 131:367–393. https://doi.org/10.1007/s10265-018-1021-1

    Article  PubMed  Google Scholar 

  • Ronse De Craene LP, Smets E (1991) Morphological studies in Zygophyllaceae. I. The floral development and vascular anatomy of Nitraria retusa. Am J Bot 78:1438–1448

    Google Scholar 

  • Ronse De Craene LP, Haston E (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc 151:453–494. https://doi.org/10.1111/j.1095-8339.2006.00580.x

    Article  Google Scholar 

  • Ronse De Craene LP, De Laet J, Smets E (1996) Morphological studies in Zygophyllaceae. II. The floral development and vascular anatomy of Peganum harmala. Am J Bot 83:201–215

    Google Scholar 

  • Ronse De Craene LP, Smets E, Clinckemaillie D (2000) Floral ontogeny and anatomy in Koelreuteria with special emphasis on monosymmetry and septal cavities. Plant Syst Evol 223:91–107. https://doi.org/10.1007/BF00985329

    Article  Google Scholar 

  • Sheelal L, Narayana LL (1994) Floral anatomy and systematic position of Flindersia R. Br Feddes Rep 105:31–36

    Google Scholar 

  • Solís SM, Zini LM, González VV, Ferrucci MS (2017) Floral nectaries in Sapindaceae s.s.: morphological and structural diversity, and their systematic implications. Protoplasma 254:2169–2188. https://doi.org/10.1007/s00709-017-1108-x

    Article  PubMed  Google Scholar 

  • Souza LA, Moscheta IS, Mourão KSM, Silverio A (2001) Morphology and anatomy of the flowers of Trichilia catigua A. Juss., T. elegans A. Juss. and T. pallida Sw. (Meliaceae). Braz Arch Biol Technol 44:383–393

    Google Scholar 

  • Souza LA, Moscheta IS, Mourão KSM, Rosa SM (2002) Morfo-anatomia da flor de Guarea kunthiana A. Juss. e de Guarea macrophylla Vahl. (Meliaceae). Acta Sci Maringá 24:591–600

    Google Scholar 

  • Souza LA, Mourão KSM, Moscheta IS, Rosa SM (2003) Morfologia e anatomia da flor de Pilocarpus pennatifolius Lem. (Rutaceae). Rev Bras Bot 26:175–184. https://doi.org/10.1590/S0100-84042003000200005

    Article  Google Scholar 

  • Souza LA, Moscheta IS, Mourão KSM, Rosa SM (2004) Morphology and anatomy of the flowers and anthesis of Metrodorea nigra St. Hill (Rutaceae). Braz Arch Biol Technol 47:107–112

  • Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/. Accessed 20 May 2021

  • Styles BT (1972) The floral biology of the Meliaceae and its bearing on tree breeding. Silvae Genet 21:175–182

    Google Scholar 

  • Takeda F, Crane JC, Lin J (1979) Pistillate flower bud development in pistachio. J Am Soc Hortic Sci 104:229–232

    Google Scholar 

  • Tavares MC, Tölke ED, Nunes CEP, Carmello-Guerreiro SM (2020) Floral morpho-anatomy and reproductive ecology of Spondias macrocarpa Engl. (Anacardiaceae), a vulnerable neotropical andromonoecious tree. Flora 273:151707. https://doi.org/10.1016/j.flora.2020.151707

    Article  Google Scholar 

  • Tilak VD, Nene PM (1978) Floral anatomy of the Rutaceae. Indian J Bot 1:83–90

    Google Scholar 

  • Tillson AH, Bamford R (1938) The floral anatomy of the Aurantioideae. Am J Bot 25:780–793

    Google Scholar 

  • Tobe H (2003) Morphology in current trends of plant systematics. Plant Morphol 15:40–49. https://doi.org/10.5685/plmorphol.15.40

    Article  Google Scholar 

  • Tölke ED, Demarco D (2020) The development of pseudomonomerous gynoecia: Anacardiaceae (Subfamily Anacardioideae) as a case study. In: Demarco D (ed) Plant Ontogeny: studies, analyses and evolutionary implications. Nova Science, New York, pp 231–262

    Google Scholar 

  • Tölke ED, Demarco D, Carmello-Guerreiro SM, Bachelier JB (2021) flower structure and development of Spondias tuberosa and Tapirira guianensis (Spondioideae): implications for the evolution of the unisexual flowers and pseudomonomery in Anacardiaceae. Int J Plant Sci. https://doi.org/10.1086/716780

    Article  Google Scholar 

  • Wannan BS, Quinn CJ (1991) Floral structure and evolution in the Anacardiaceae. Bot J Linn Soc 107:349–385

    Google Scholar 

  • Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge

    Google Scholar 

  • Weckerle CS, Rutishauser R (2003) Comparative morphology and systematic position of Averrhoidium within Sapindaceae. Int J Plant Sci 164:775–792. https://doi.org/10.1086/376810

    Article  Google Scholar 

  • Weckerle CS, Rutishauser R (2005) Gynoecium, fruit and seed structure of Paullinieae (Sapindaceae). Bot J Linn Soc 147:159–189. https://doi.org/10.1111/j.1095-8339.2005.00365.x

    Article  Google Scholar 

  • Wei L, Wang WZ, Li ZY (2011) Floral ontogeny of Ruteae (Rutaceae) and its systematic implications. Plant Biol 14:190–197. https://doi.org/10.1111/j.1438-8677.2011.00475.x

    Article  PubMed  Google Scholar 

  • Wei L, Xiang X, Wang Y, Li Z (2015) Phylogenetic relationships and evolution of the androecia in Ruteae (Rutaceae). PLoS ONE 10:e0137190. https://doi.org/10.1371/journal.pone.0137190

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Xu SX (1990) Scanning electron microscopic studies on the development of the organs of Litchi flower. Acta Bot Sin 32:905–908

    Google Scholar 

  • Xu SX (1991) Scanning electron microscopic studies on the organ development of Longan flower. Acta Bot Sin 33:938–942

    Google Scholar 

  • Yadav N, Pandey AK, Bhatnagar AK (2016) Cryptic monoecy and floral morph types in Acer oblongum (Sapindaceae): an endangered taxon. Flora 224:183–190. https://doi.org/10.1016/j.flora.2016.07.018

    Article  Google Scholar 

  • Yamamoto T, Vassiliades DD, Tobe H (2014) Embryology of Biebersteinia (Biebersteiniaceae, Sapindales): characteristics and comparisons with related families. J Plant Res 27:599–661

    Google Scholar 

  • Yamazaki T (1988) Floral anatomy of the genus Zanthoxylum L. J Jpn Bot 63:7

    Google Scholar 

  • Yeo PF (1993) Secondary pollen presentation: form, function and evolution. Springer, Wien

    Google Scholar 

  • Zhang Y (2018) Comparative floral developmental study of Acer and Dipteronia (Sapindaceae). Unpubl. Master Dissertation, University of Edinburgh

  • Zhou QY, Liu GS (2012) The embryology of Xanthoceras and its phylogenetic implications. Plant Syst Evol 298:457–468. https://doi.org/10.1007/s00606-011-0558-4

    Article  Google Scholar 

  • Zhou Q, Cai Q, Zheng Y, Wu Z, Mao J (2019) Floral development and the formation of functionally unisexual flowers in Xanthoceras sorbifolium (Sapindaceae), a morphologically andromonoecious tree endemic to northern China. Trees 33:1571–1582. https://doi.org/10.1007/s00468-019-01879-6

    Article  Google Scholar 

  • Zini LM, Solís SM, Ferrucci MS (2014) Anatomical and developmental studies on floral nectaries in Cardiospermum species: an approach to the evolutionary trend in Paullinieae. Plant Syst Evol 300:1515–1523

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the technicians of the Plant Anatomy Laboratory (IB-USP), Gisele R. O. Costa, Tássia C. Santos, and Irwandro R. Pires, for their assistance to the first author in the laboratory. We also thanks Klei Rodrigo Sousa for assistance with graphic work, Dr. W. Wayt Thomas for sharing an image of Picrolemma, and to the Class of BIB 434 (2016) from IB-USP course, for assisting the analysis of T. pallens. The first author thanks to the FLO-RE-S group, for fruitful conversations on floral structure and for joining plant scientists together in research to disentangle “the nature and causes behind the floral shape” (Bull-Hereñu et al. 2016; https://flores-network.com). This research was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo [FAPESP, grants numbers 14/18002-2, and 15/09776-7] awarded to J.R. Pirani and J.H.L. El Ottra; and Conselho Nacional de Desenvolvimento e Pesquisa [CNPq productivity Grant n. 307655/2015-6, awarded to J.R. Pirani, and CNPq grant n. 150634/2017-0 to J.H.L. El Ottra]. We appreciate the helpful review and comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Hanna Leite El Ottra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Ottra, J.H.L., de Albuquerque Melo-de-Pinna, G.F., Demarco, D. et al. Gynoecium structure in Sapindales and a case study of Trichilia pallens (Meliaceae). J Plant Res 135, 157–190 (2022). https://doi.org/10.1007/s10265-022-01375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-022-01375-y

Keywords

  • Apomorphic tendency
  • Carpellodes
  • Congenital fusion
  • Fruit
  • Gynoecium architecture
  • Postgenital fusion
  • Syncarpy
  • Vascularization