Skip to main content

Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings

Abstract

Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during stress responses. At present, the interaction and mechanism of SLs and NO in tomato salt tolerance remain unclear. In the current study, tomato 'Micro-Tom' was used to study the roles and interactions of SLs and NO in salinity stress tolerance. The results show that 15 μM SLs synthetic analogs GR24 and 10 μM NO donor S-nitrosoglutathione (GSNO) promoted seedling growth under salt stress. TIS108 (an inhibitor of strigolactone synthesis) suppressed the positive roles of NO in tomato growth under salt stress, indicating that endogenous SLs might be involved in NO-induced salt response in tomato seedlings. Meanwhile, under salt stress, GSNO or GR24 treatment induced the increase of endogenous SLs content in tomato seedlings. Moreover, GR24 or GSNO treatment effectively increased the content of chlorophyll, carotenoids and ascorbic acid (ASA), and enhanced the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), glutathione reductase (GR) and cleavage dioxygenase (CCD) enzyme. Additionally, GSNO or GR24 treatment also up-regulated the expression of SLs synthesis genes (SlCCD7, SlCCD8, SlD27 and SlMAX1) and its signal transduction genes (SlD14 and SlMAX2) in tomato seedlings under salt stress. While, a strigolactone synthesis inhibitor TIS108 blocked the increase of endogenous SLs, chlorophyll, carotenoids and ASA content, and antioxidant enzyme, GR, CCD enzyme activity and SLs-related gene expression levels induced by GSNO. Thus, SLs may play an important role in NO-enhanced salinity tolerance in tomato seedlings by increasing photosynthetic pigment content, enhancing antioxidant capacity and improving endogenous SLs synthesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 32072559, 31860568, 31560563, 31160398 and 32102370); the National Key Research and Development Program (2018YFD1000800); the Research Fund of Higher Education of Gansu, China (no. 2018C-14 and 2019B-082); the Natural Science Foundation of Gansu Province, China (nos. 1606RJZA073 and 1606RJZA077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibiao Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, C., Yan, M. et al. Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. J Plant Res 135, 337–350 (2022). https://doi.org/10.1007/s10265-022-01371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-022-01371-2

Keywords

  • Antioxidant
  • Photosynthetic
  • Salinity
  • S-Nitrosoglutathione