Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829–846. https://doi.org/10.1007/s00425-015-2315-3
CAS
Article
PubMed
Google Scholar
Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Bioch 115:449–460. https://doi.org/10.1016/j.plaphy.2017.04.017
CAS
Article
Google Scholar
Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186. https://doi.org/10.1146/annurev-arplant-043014-114759
CAS
Article
PubMed
Google Scholar
Alnusairi G, Mazrou Y, Qari SH, Elkelish AA, Soliman MH, Eweis M, Abdelaal K, El-Samad GA, Ibrahim M, ElNahhas N (2021) Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants (basel, Switzerland) 10:1693. https://doi.org/10.3390/plants10081693
CAS
Article
Google Scholar
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1
CAS
Article
PubMed
PubMed Central
Google Scholar
Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55. https://doi.org/10.1016/j.jplph.2012.08.020
CAS
Article
PubMed
Google Scholar
BaNerjee A, Roychoudhury A (2018) Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta Physiol Plant 40:86. https://doi.org/10.1007/s11738-018-2660-5
CAS
Article
Google Scholar
Bharti N, Bhatla SC (2015) Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings. Plant Signal Behav 10:e1054087. https://doi.org/10.1080/15592324.2015.1054087
CAS
Article
PubMed
PubMed Central
Google Scholar
Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28. https://doi.org/10.1093/mp/sss130
CAS
Article
PubMed
Google Scholar
Castillo MC, Coego A, Costa-Broseta Á, León J (2018) Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. J Exp Bot 69:5265–5278. https://doi.org/10.1093/jxb/ery286
CAS
Article
PubMed
PubMed Central
Google Scholar
Choi J, Lee T, Cho J, Servante EK, Pucker B, Summers W, Bowden S, Rahimi M, An K, An G, Bouwmeester HJ, Wallington EJ, Oldroyd G, Paszkowski U (2020) The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nat Commun 11:2114. https://doi.org/10.1038/s41467-020-16021-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of Witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190. https://doi.org/10.1126/science.154.3753.1189
CAS
Article
PubMed
Google Scholar
Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crop Res 67:35–49. https://doi.org/10.1016/S0378-4290(00)00082-4
Article
Google Scholar
Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472. https://doi.org/10.1111/pce.12707
CAS
Article
PubMed
Google Scholar
Farooq M, Ahmad R, Shahzad M, Sajjad Y, Khan SA (2021) Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses. Sci Hortic 287:110258. https://doi.org/10.1016/j.scienta.2021.110258
CAS
Article
Google Scholar
Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856. https://doi.org/10.1073/pnas.1322135111
CAS
Article
PubMed
Google Scholar
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. https://doi.org/10.3390/antiox9080681
CAS
Article
PubMed Central
Google Scholar
Huang J, Zhu CQ, Hussain S, Huang J, Liang QD, Zhu LF, Cao XC, Kong YL, Li YF, Wang LP, Li JW, Zhang JH (2020) Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiol Biochem 155:374–383. https://doi.org/10.1016/j.plaphy.2020.06.013
CAS
Article
PubMed
Google Scholar
Huang DD, Wang YY, Zhang DC, Dong Y, Zhang L (2021a) Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage. Postharvest Biol Tec 178:111546. https://doi.org/10.1016/j.postharvbio.2021.111546
CAS
Article
Google Scholar
Huang DJ, Li WT, Dawuda MM, Huo JQ, Li CX, Wang CL, Liao WB (2021b) Hydrogen sulfide reduced colour change in Lanzhou lily-bulb scales. Postharvest Biol Tec 176:111520. https://doi.org/10.1016/j.postharvbio.2021.111520
CAS
Article
Google Scholar
Ito S, Umehara M, Hanada A, Yamaguchi S, Asami T (2013) Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signal Behav 8:e24193. https://doi.org/10.4161/psb.24193
CAS
Article
PubMed
PubMed Central
Google Scholar
Jarvis P, Lopez-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802. https://doi.org/10.1038/nrm3702
CAS
Article
PubMed
Google Scholar
Jia H, Shao MQ, He YJ, Guan RZ, Chu P, Jiang HD (2015) Proteome dynamics and physiological responses to short-term salt stress in Brassica napus Leaves. PLoS ONE 10:e0144808. https://doi.org/10.1371/journal.pone.0144808
CAS
Article
PubMed
PubMed Central
Google Scholar
Jia KP, Li CS, Bouwmeester HJ, Al-Babili S (2019) Strigolactone biosynthesis and signal transduction. Strigolactones Biol Appl. https://doi.org/10.1007/978-3-030-12153-2_1
Article
Google Scholar
Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, Wang L, Meng XB, Liu GF, Yu H, Yuan YD, Yi W, Zhao LH, Ma HL, He YZ, Wu ZS, Melcher K, Qian Q, Xu HE, Wang YH, Li JY (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405. https://doi.org/10.1038/nature12870
CAS
Article
PubMed
PubMed Central
Google Scholar
Kampfenkel K, Van Montagu M, Inzé D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167. https://doi.org/10.1006/abio.1995.1127
CAS
Article
PubMed
Google Scholar
Kitahata N, Han SY, Noji N, Saito T, Kobayashi M, Nakano T, Kuchitsu K, Shinozaki K, Yoshida S, Matsumoto S, Tsujimoto M, Asami T (2006) A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorgan Med Chem 14:5555–5561. https://doi.org/10.1016/j.bmc.2006.04.025
CAS
Article
Google Scholar
Kolbert Z (2018) Strigolactone-nitric oxide interplay in plants: the story has just begun. Physiol Plant 165:487–497. https://doi.org/10.1111/ppl.12712
CAS
Article
PubMed
Google Scholar
Kolbert Z, Gábor F (2017) Cross-talk of reactive oxygen species and nitric oxide in various processes of plant development. Wiley, New York, p 261. https://doi.org/10.1002/9781119324928.ch14
Book
Google Scholar
Kong CC, Ren CG, Li RZ, Xie ZH, Wang JP (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in sesbania cannabina seedlings. J Plant Growth Regul 36:734–742. https://doi.org/10.1007/s00344-017-9675-9
CAS
Article
Google Scholar
Liao WB, Huang GB, Yu JH, Zhang ML (2012) Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol Bioch 58:6–15. https://doi.org/10.1016/j.plaphy.2012.06.012
CAS
Article
Google Scholar
Liao WB, Zhang ML, Yu JH (2013) Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci Hortic-Amsterdam 155:30–38. https://doi.org/10.1016/j.scienta.2013.03.005
CAS
Article
Google Scholar
Ling FL, Su QW, Hao J, Cui JJ, He XL, Wu ZH, Zhang ZA, Liu J, Zhao YJ (2020) Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep-UK 10:6183. https://doi.org/10.1038/s41598-020-63352-6
CAS
Article
Google Scholar
Lufu R, Ambaw A, Opara UL (2020) Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci Hortic 272:109519. https://doi.org/10.1016/j.scienta.2020.109519
Article
Google Scholar
Ma N, Hu C, Wan L, Hu Q, Xiong JL, Zhang CL (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci 8:1671. https://doi.org/10.3389/fpls.2017.01671
Article
PubMed
PubMed Central
Google Scholar
Ma QL, Ling X, Zhan MX, Chen ZX, Wang HG, Xiao FX, Chen JY (2021) Effect of an exogenous strigolactone GR24 on the antioxidant capacity and quality deterioration in postharvest sweet orange fruit stored at ambient temperature. Int J Food Sci Tech 57:619–630. https://doi.org/10.1111/ijfs.15415
CAS
Article
Google Scholar
Mathieu S, Bigey F, Procureur J, Terrier N, Günata Z (2007) Production of a recombinant carotenoid cleavage dioxygenase from grape and enzyme assay in water-miscible organic solvents. Biotechnol Lett 29:837–841. https://doi.org/10.1007/s10529-007-9315-8
CAS
Article
PubMed
Google Scholar
Mayzlish-Gati E, LekKala SP, Resnick N, Wininger S, Bhattacharya C, Lemcoff JH, Kapulnik Y, Koltai H (2010) Strigolactones are positive regulators of light-harvesting genes in tomato. J Exp Bot 61:3129–3136. https://doi.org/10.1093/jxb/erq138
CAS
Article
PubMed
PubMed Central
Google Scholar
Niu LJ, Yu J, Liao WB, Yu J, Zhang M, Dawuda MM (2017) Calcium and calmodulin are involved in nitric oxide-induced adventitious rooting of cucumber under simulated osmotic stress. Front Plant Sci 8:1684. https://doi.org/10.3389/fpls.2017.01684
Article
PubMed
PubMed Central
Google Scholar
Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, Van Staden J (2020) Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiol Bioch 155:965–979. https://doi.org/10.1016/j.plaphy.2020.07.043
CAS
Article
Google Scholar
Ren CG, Kong CC, Xie ZH (2018) Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol 18:74. https://doi.org/10.1186/s12870-018-1292-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158. https://doi.org/10.1199/tab.0158
Article
PubMed
PubMed Central
Google Scholar
Santos MP, Zandonadi DB, de Sa AFL, Costa EP, de Oliveira CJL, Perez LEP, Facanha AR, Bressan-Smith R (2020) Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots. Theor Exp Plant Phys 32:301–313. https://doi.org/10.1007/s40626-020-00187-6
CAS
Article
Google Scholar
Sarwar Y, Shahbaz M (2019) GR24 Triggered variations in morpho-physiological attributes of sunflower (Helianthus annuus) under salinity. Int J Agric Biol 21:34–40. https://doi.org/10.17957/IJAB/15.0000
CAS
Article
Google Scholar
Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, Yildirim E (2019) Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biol Plants 25:1149–1161. https://doi.org/10.1007/s12298-019-00692-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Shan CJ, Zhou Y, Liu MJ (2015) Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma 2252:1397–1405. https://doi.org/10.1007/s00709-015-0756-y
CAS
Article
Google Scholar
Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675. https://doi.org/10.1016/j.scitotenv.2020.136675
CAS
Article
PubMed
Google Scholar
Shen Q, Wang YT, Tian H, Guo FQ (2013) Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. Mol Plant 6:1214–1225. https://doi.org/10.1093/mp/sss148
CAS
Article
PubMed
Google Scholar
Siddiqui MH, Alamri SA, Al-Khaishany MY, Al-Qutami MA, Ali HM, Al-Rabiah H, Kalaji HM (2017) Exogenous application of nitric oxide and spermidine reduces the negative effects of salt stress on tomato. Hortic Environ Biotechnol 58:537–547. https://doi.org/10.1007/s13580-017-0353-4
CAS
Article
Google Scholar
Simpson GG (2005) NO flowering. BioEssays 27:239–241. https://doi.org/10.1002/bies.20201
CAS
Article
PubMed
Google Scholar
Sun HW, Bi Y, Tao JY, Huang SJ, Hou MM, Xue R, Liang ZH, Gu PY, Yoneyama K, Xie XN, Shen QR, Xu GH, Zhang YL (2016) Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Environ 39:1473–1484. https://doi.org/10.1111/pce.12709
CAS
Article
PubMed
Google Scholar
Sun TH, Yuan H, Cao HB, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74. https://doi.org/10.1016/j.molp.2017.09.010
CAS
Article
PubMed
Google Scholar
Tian MQ, Jiang K, Takahashi I, Li GD (2018) Strigolactone-induced senescence of a bamboo leaf in the dark is alleviated by exogenous sugar. J Pestic Sci 43:173–179. https://doi.org/10.1584/jpestics.D18-003
CAS
Article
PubMed
PubMed Central
Google Scholar
Tripepi A, Guglielminetti L (2017) Actions of strigolactone GR24 and DRM1 gene expression on Arabidopsis root architecture. Russ J Plant Phys 64:845–849. https://doi.org/10.1134/S1021443717060127
CAS
Article
Google Scholar
Turk H (2019) Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiol Bioch 141:415–422. https://doi.org/10.1016/j.plaphy.2019.06.025
CAS
Article
Google Scholar
Wang YJ, Wang LQ, Yang XW, Li XD, Zang HC, Fang BT (2021) Effects of wheat grain filling and yield formation by exogenous strigolactone under drought condition. J Biobased Materials Bioenergy 15:218–223. https://doi.org/10.1166/jbmb.2021.2034
CAS
Article
Google Scholar
Wang CL, Wei LJ, Zhang J, Hu DL, Gao R, Liu YY, Feng L, Gong WT, Liao WB (2021) Nitric oxide enhances salt tolerance in tomato seedlings by regulating endogenous s-nitrosylation levels. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10546-5
Article
Google Scholar
Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322. https://doi.org/10.1146/annurev-arplant-042916-040925
CAS
Article
PubMed
Google Scholar
Wei LJ, Wang CL, Liao WB (2021) Hydrogen sulfide improves the vase life and quality of cut roses and chrysanthemums. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10312-7
Article
Google Scholar
Xu X, Jibran R, Wang Y, Dong L, Flokova K, Esfandiari A, McLachlan ARG, Heiser A, Sutherland-Smith AJ, Brummell DA, Bouwmeester HJ, Dijkwel PP, Hunter DA (2021) Strigolactones regulate sepal senescence in Arabidopsis. J Exp Bot 72:5462–5477. https://doi.org/10.1093/jxb/erab199
CAS
Article
PubMed
Google Scholar
Yan A, Chen Z (2020) The control of seed dormancy and germination by temperature, light and nitrate. Bot Rev. https://doi.org/10.1007/s12229-020-09220-4
Article
Google Scholar
Yan FY, Wei HM, Li WW, Liu ZH, Tang S, Chen L, Ding CQ, Jiang Y, Ding YF, Li GH (2020a) Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotox Environ Safe 206:111358. https://doi.org/10.1016/j.ecoenv.2020.111358
CAS
Article
Google Scholar
Yan FY, Wei HM, Li WW, Liu ZH, Tang S, Chen L, Ding CQ, Jiang Y, Ding YF, Li GH (2020b) Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotox Environ Saf 206:111358. https://doi.org/10.1016/j.ecoenv.2020.111358
CAS
Article
Google Scholar
Yang T, Lian YK, Wang CY (2019) Comparing and contrasting the multiple roles of butenolide plant growth regulators: strigolactones and karrikins in plant development and adaptation to abiotic stresses. Int J Mol Sci 20:6270. https://doi.org/10.3390/ijms20246270
CAS
Article
PubMed Central
Google Scholar
Yasuda N, Sugimoto Y, Kato M, Inanaga S, Yoneyama K (2003) (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62:1115–1119. https://doi.org/10.1007/s00344-017-9675-9
CAS
Article
PubMed
Google Scholar
Yurekli F, Kirecci OA, Ilknur C (2019) The effects of nitric oxide on some antioxidant enzyme activities under salt stress in sunflower plants. Acta Sci Pol Hortorum Cultus 18:171–179. https://doi.org/10.24326/asphc.2019.5.17
Article
Google Scholar
Zhang B, Wang HQ, Wang P, Zhang HG (2010) Involvement of nitric oxide synthase-dependent nitric oxide and exogenous nitric oxide in alleviating NaCl induced osmotic and oxidative stress in Arabidopsis thaliana. Afr J Agric Res 5:1713–1721. https://doi.org/10.5897/AJAR09.743
Article
Google Scholar
Zhang YX, Cheng X, Wang YT, Díez-Simón C, Flokova K, Bimbo A, Bouwmeester HJ, Ruyter-Spira C (2018) The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol 219:297–309. https://doi.org/10.1111/nph.15131
CAS
Article
PubMed
Google Scholar
Zheng L, Ma HY, Jiao QQ, Ma CL, Wang PP (2020) Phytohormones: important participators in plant salt tolerance. Int J Agric Boil 24:319–332. https://doi.org/10.17957/IJAB/15.1441
CAS
Article
Google Scholar
Zhu YC, Liao WB, Wang M, Niu LJ, Xu QQ, Jin X (2016) Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J Plant Physiol 195:50–58. https://doi.org/10.1016/j.jplph.2016.02.018
CAS
Article
PubMed
Google Scholar
Zulfiqar H, Muhammad S, Muhammad A, Muhammad N, Fahad S (2021) Strigolactone (GR24) induced salinity tolerance in sunflower (Helianthus annuus L.) by ameliorating morpho-physiological and biochemical attributes under in vitro conditions. J Plant Growth Regul 40:2079–2091. https://doi.org/10.1007/s00344-020-10256-4
Article
Google Scholar