Skip to main content

Advertisement

Log in

Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Flooding negatively influences the growth and development of several plant species. Here, we show that the flood tolerance of young Handroanthus chrysotrichus plants involves growth deficit, carbon assimilation reductions, starch remobilization, and energy regulation. The effect of hypoxia was evaluated in a controlled experiment consisting of plants subjected to normoxia and water-logging, with later recovery. We measured morphological changes, gas exchange, photosynthetic pigments, soluble carbohydrates and starch contents, the activity of the enzymes alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC), and ATP and ADP levels. While control plants showed normal appearance and growth, flooded plants exhibited a drastic decrease in growth, necrosis of some root tips, hypertrophic lenticels on the stems, and foliar chlorosis. Oxygen deprivation in root cells led to a significant decrease in stomatal conductance. The low Amax rates caused a decline in foliar soluble sugar content at 20 days and a subsequent increase in the leaves and roots, coinciding with starch degradation at 40 days. We also observed increases of 220.5% in ADH and 292% in PDC activities in the roots at 20 and 40 days of flooding. The activation of anaerobic metabolism in stressed plants was an essential mechanism for ATP regulation in both tissues used to maintain a minimal metabolism to cope with hypoxia to the detriment of growth. The post-stress recovery process in H. chrysotrichus occurred slowly, with gas exchange gradually resumed and anaerobic metabolism and sugar content maintained to improve energy regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The research was supported by Universidade Estadual de Mato Grosso do Sul. The authors thank Marcio Tomaz de Assis for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro Alves Vieira.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bispo, T.M., Vieira, E.A. Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress. J Plant Res 135, 323–336 (2022). https://doi.org/10.1007/s10265-022-01370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-022-01370-3

Keywords

Navigation