Akiyama S, Thijsse G, Esser H-J, Ohba H (2013) Siebold and Zuccarini’s type specimens and original materials from Japan, Part 2. Angiosperms, Dicotyledoneae 1. J Jap Bot 88:346–377
Google Scholar
Backlund A, Bremer K (1998) To be or not to be—principles of classification and monotypic plant families. Taxon 47:391–400. https://doi.org/10.2307/1223768
Article
Google Scholar
Barker C (2002) Plate 432. Broussonetia papyrifera. Bot Mag 19:8–18. https://doi.org/10.1111/1467-8748.00324
Article
Google Scholar
Berg CC, Corner EJH, Jarrett FM (2006) Moraceae, genera other than Ficus. In: Nooteboom HP (ed) Flora Malesiana, Series I, vol 17/Part 1. National Herbarium Nederland, Leiden, pp 1–152
Google Scholar
Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 17:e42. https://doi.org/10.1186/s12862-017-0890-6
Article
Google Scholar
Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang S, Wu C, Cao Z (1998) Moraceae. In: Chang S, Wu C (eds) Flora Reipublicae Popularis Sinicae, Tomus 23(1). Science Press, Beijing, pp 1–219 (In Chinese)
Google Scholar
Chang C-S, Liu H-L, Moncada X, Seelenfreund A, Seelenfreund D, Chung K-F (2015) A holistic picture of Austronesian migrations revealed by phylogeography of Pacific paper mulberry. Proc Natl Acad Sci USA 112:13537–13542. https://doi.org/10.1073/pnas.1503205112
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen C, Zhou W, Huang Y, Wang Z-Z (2016) The complete chloroplast genome sequence of the mulberry Morus notabilis (Moreae). Mitochondrial DNA A 27:2856–2857. https://doi.org/10.3109/19401736.2015.1053127
CAS
Article
Google Scholar
Chûjô K (1950) Notes on Broussonetia papyrifera Vent (Kazinoki), B. kazinoki Sieb (Kôzo) and B. kaempferi Sieb (Turu-Kôzo). J Jap For Soc 32:329–334 (In Japanese with English abstract)
Google Scholar
Chung K-F, Kuo W-H, Hsu Y-H, Li Y-H, Rubite RR, Xu W-B (2017) Molecular recircumscription of Broussonetia (Moraceae) and the identity and taxonomic status of B. kaempferi var. australis. Bot Stud 58:e11. https://doi.org/10.1186/s40529-017-0165-y
Article
Google Scholar
Clement WL, Weiblen GD (2009) Morphological evolution in the mulberry family (Moraceae). Syst Bot 34:530–552. https://doi.org/10.1600/036364409789271155
Article
Google Scholar
Corner EJH (1962) The classification of Moraceae. Gard Bull Singapore 19:187–252
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704
CAS
Article
PubMed
PubMed Central
Google Scholar
Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707. https://doi.org/10.1038/nature01019
CAS
Article
PubMed
Google Scholar
Doyle J (1991) DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293
Chapter
Google Scholar
Ďurkovič J, Kardošová M, Čaňová I, Lagaňa R, Priwitzer T, Chorvát D, Cicák A, Pichler V (2012) Leaf traits in parental and hybrid species of Sorbus (Rosaceae). Am J Bot 99:1489–1500. https://doi.org/10.3732/ajb.1100593
Article
PubMed
Google Scholar
Fosberg FR (1992) An essay on lectotypification. Taxon 41:321–323. https://doi.org/10.2307/1222339
Article
Google Scholar
Gardner EM, Audi L, Zhang Q, Sauquet H, Monro AK, Zerega NJC (2021) Phylogenomics of Brosimum (Moraceae) and allied genera, including a revised subgeneric system. Taxon 70:778–792. https://doi.org/10.1002/tax.12503
Article
Google Scholar
Gil H-Y, Kim S-C (2016) Viola woosanensis, a recurrent spontaneous hybrid between V. ulleungdoensis and V. chaerophylloides (Violaceae) endemic to Ulleung Island. Korea. J Plant Res 129:807–822. https://doi.org/10.1007/s10265-016-0830-3
CAS
Article
PubMed
Google Scholar
Hamzeh M, Sawchyn C, Perinet P, Dayanandan S (2007) Asymmetrical natural hybridization between Populus deltoides and P. balsamifera (Salicaceae). Can J Bot 85:1227–1232. https://doi.org/10.1139/B07-105
CAS
Article
Google Scholar
Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x
CAS
Article
PubMed
Google Scholar
Heenan PB, Smissen RD (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146:1–31. https://doi.org/10.11646/phytotaxa.146.1.1
Article
Google Scholar
Heilbuth JC (2000) Lower species richness in dioecious clades. Am Nat 156:221–241. https://doi.org/10.1086/303389
Article
PubMed
Google Scholar
Hsieh C-L, Yu C-C, Huang Y-L, Chung K-F (2022) Mahonia vs. Berberis unloaded: Generic delimitation and infrafamilial classification of Berberidaceae based on plastid phylogenomics. Front Plant Sci 12:e720171. https://doi.org/10.3389/fpls.2021.720171
Article
Google Scholar
Huang S-F (2011) Historical biogeography of the flora of Taiwan. J Natl Taiwan Mus 64:33–63 (In Chinese with English abstract)
Google Scholar
Hunter D (1978) Papermaking. Dover Publications, New York
Google Scholar
Jeong SH (2015) A study on manufacturing technologies and excellence of Korean traditional paper. Korean J Cult Herit Stud 48:96–131 (In Korean with English abstract)
Google Scholar
Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
CAS
Article
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Article
PubMed
PubMed Central
Google Scholar
Kim M, Kim T-J, Lee S (1992) A taxonomic study of the Korea Broussonetia (Moraceae) by multivariate analysis. Korean J Pl Taxon 22:241–254 (In Korean with English abstract)
Article
Google Scholar
Kitamura S, Murata G (1980) Coloured illustrations of woody plants of Japan, vol II. Hoikusha Publishing Co., Osaka (In Japanese)
Google Scholar
Kitamura S, Okamoto S (1962) Coloured illustrations of trees and shrubs of Japan. Hoikusha Publishers, Osaka (In Japanese)
Google Scholar
Kwon E-C, Kim J-H, Kim N-S (2020) Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genom 42:553–570. https://doi.org/10.1007/s13258-020-00923-x
CAS
Article
Google Scholar
LaFrankie JVJ (2010) Trees of Tropical Asia: An Illustrated Guide to Diversity. Black Tree Publication, Inc., Manila
Google Scholar
Liao J-C (1996) Moraceae. In: Editorial Committee of the Flora of Taiwan (ed) Flora of Taiwan, vol 2, 2nd edn. Department of Botany, National Taiwan University, Taipei, Taiwan, pp 136–195
Google Scholar
Linder HP, Baeza M, Barker NP, Galley C, Humphreys AM, Lloyd KM, Orlouch DA, Purie MD, Simon BK, Walsh N, Verboom GA (2010) A generic classification of the Danthonioideae (Poaceae). Ann MO Bot Gard 97:306–364. https://doi.org/10.3417/2009006
Article
Google Scholar
Liu S-H, Tseng Y-H, Zure D, Rubite RR, Balangcod TD, Peng C-I, Chung K-F (2019) Begonia balangcodiae sp. nov. from northern Luzon, the Philippines and its natural hybrid with B. crispipila, B. × kapangan nothosp. nov. Phytotaxa 407:5–21. https://doi.org/10.11646/phytotaxa.407.1.3
Article
Google Scholar
Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581. https://doi.org/10.1093/nar/gkt289
Article
PubMed
PubMed Central
Google Scholar
Londo JP, Chiang Y-C, Hung K-H, Chiang T-Y, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583. https://doi.org/10.1073/pnas.0603152103
CAS
Article
PubMed
PubMed Central
Google Scholar
Louppe D (2008) Broussonetia greveana (Baill.) C.C.Berg. In: Louppe D, Oteng-Amoako AA, Brink M (eds) Prota 7(1): Timbers/Bois d’oeuvre 1 [CD-Rom]. PROTA, Wageningen
Google Scholar
Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413
CAS
Article
PubMed
PubMed Central
Google Scholar
McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, van Prud’homme WF, Smith GF, Wiersema JH, Turland NJ (2012) International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Veg 154:1–240
Miller A, Schaal B (2005) Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea. Proc Natl Acad Sci USA 102:12801–12806. https://doi.org/10.1073/pnas.0505447102
CAS
Article
PubMed
PubMed Central
Google Scholar
Mizumura M, Kubo T, Moriki T (2017) Japanese paper: history, development and use in Western paper conservation. In: Whymark F (ed) Adapt & evolve 2015: East Asian materials and techniques in western conservation. The Institute of Conservation, London, pp 43–59
Google Scholar
Narita Y, Yosinaga K (1955) Studies on the breeding of paper mulberry (Broussonetia). III. On the chromosome number of Broussonetia kaempferi Sieb. (TURU-KÔZO). J Jap Forest Soc 37:52 (In Japanese with English abstract)
Google Scholar
Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. https://doi.org/10.1073/pnas.70.12.3321
CAS
Article
PubMed
PubMed Central
Google Scholar
Nei M, Li W-H (1979) Mathematical-model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273. https://doi.org/10.1073/pnas.76.10.5269
CAS
Article
PubMed
PubMed Central
Google Scholar
Ni JW, Su S, Li H, Geng YH, Zhou HJ, Feng YZ, Xu XQ (2020) Distinct physiological and transcriptional responses of leaves of paper mulberry (Broussonetia kazinoki × B. papyrifera) under different nitrogen supply levels. Tree Physiol 40:667–682. https://doi.org/10.1093/treephys/tpaa021
CAS
Article
PubMed
Google Scholar
Oginuma K, Tobe H (1995) Karyomorphology of some Moraceae and Cecropiaceae (Urticales). J Plant Res 108:313–326. https://doi.org/10.1007/Bf02344357
Article
Google Scholar
Ohba H, Akiyama S (2014) Broussonetia (Moraceae) in Japan. J Jap Bot 89:123–128 (In Japanese with English abstract)
Google Scholar
Ohwi J (1965) Flora of Japan. Smithsonian Institute, Washington, D.C.
Google Scholar
Okamoto M (2006) Moraceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan, vol IIa. Kodansha Ltd., Tokyo, pp 67–77
Google Scholar
Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. https://doi.org/10.1093/bioinformatics/btp696
CAS
Article
PubMed
Google Scholar
Park S-C, Yoo D-G, Lee C-W, Lee E-I (2000) Last glacial sea-level changes and paleogeography of Korea (Tsushima) Strait. Geo-Mar Lett 20:64–71. https://doi.org/10.1007/s003670000039
Article
Google Scholar
Penailillo J, Olivares G, Moncada X, Payacan C, Chang C-S, Chung K-F, Matthews PJ, Seelenfreund A, Seelenfreund D (2016) Sex distribution of paper mulberry (Broussonetia papyrifera) in the Pacific. PLoS ONE 11:e0161148. https://doi.org/10.1371/journal.pone.0161148
CAS
Article
PubMed
PubMed Central
Google Scholar
Peng X, Shen S (2018) The paper mulberry: a novel model system for woody plant research. Chin Bull Bot 53:372–381. https://doi.org/10.11983/CBB17106 (In Chinese with English abstract)
CAS
Article
Google Scholar
Peng X, Teng L, Wang X, Wang Y, Shen S (2014) De novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki × Broussonetia papyifera). PLoS ONE 9:e97487. https://doi.org/10.1371/journal.pone.0097487
CAS
Article
Google Scholar
Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ (2014) PopGenome: An efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol 31:1929–1936. https://doi.org/10.1093/molbev/msu136
CAS
Article
PubMed
PubMed Central
Google Scholar
Qiu Y-X, Sun Y, Zhang X-P, Lee J, Fu C-X, Comes HP (2009) Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to Quaternary climate change and landbridge configurations. New Phytol 183:480–495. https://doi.org/10.1111/j.1469-8137.2009.02876.x
CAS
Article
PubMed
Google Scholar
Qiu Y-X, Fu C-X, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol 59:225–244. https://doi.org/10.1016/j.ympev.2011.01.012
Article
PubMed
Google Scholar
Rabah SO, Lee C, Hajrah NH, Makki RM, Alharby HF, Alhebshi AM, Sabir JSM, Jansen RK, Ruhlman TA (2017) Plastome sequencing of ten nonmodel crop species uncovers a large insertion of mitochondrial DNA in cashew. Plant Genome-Us 10:e3. https://doi.org/10.3835/plantgenome2017.03.0020
CAS
Article
Google Scholar
Rambaut A, Drummond A, Xie D, Baele G, Suchard M (2018) Tracer v1.7, Available from http://beast.community/tracer
Rohwer JG (1993) Moraceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer-Verlag, Heidelberg, pp 438–453
Google Scholar
Ruhlman TA, Jansen RK (2021) Plastid genomes of flowering plants: essential principles. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols, methods in molecular biology, 2nd edn. Springer Science, New York, pp 3–47
Chapter
Google Scholar
Schaefer H, Renner SS (2010) A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Mol Phylogenet Evol 54:553–560. https://doi.org/10.1016/j.ympev.2009.08.006
CAS
Article
PubMed
Google Scholar
Seki H (1950) On the chromosome number of Broussonetia kazinoki Sieb. Jap J Genet 25:123–125. https://doi.org/10.1266/jjg.25.123 (In Japanese with English abstract)
Article
Google Scholar
Siebold PF (1830) Synopsis Plantarum Oeconomicarum Universi Regni Japonici. Verh Batav Genootsch Kunst 12:1–75
Google Scholar
Siebold PF, Zuccarini JG (1846) Florae japonicae familiae naturales. Sectio altera. Abh Math-Phys Cl Königl Bayer Akad Wiss 4:123–240
Google Scholar
Song M, Munn J (2004) Permanence, durability and unique properties of Hanji. Book Pap Gr Annu 23:127–136
Google Scholar
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
CAS
Article
PubMed
PubMed Central
Google Scholar
Swofford DL (2002) PAUP* 4.0: Phylogenetic Analysis Using Parsimony (* and other Methods), v. 4.0 Beta 10. Sinauer Associates, Sunderland
Google Scholar
Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am J Bot 89:1531–1546. https://doi.org/10.1002/ajb2.1254
CAS
Article
PubMed
Google Scholar
Tamaki I, Obora T, Ohsawa T, Matsumoto A, Saito Y, Ide Y (2021) Different population size change and migration histories created genetic diversity of three oaks in Tokai region, central Japan. J Plant Res 134:933–946. https://doi.org/10.1007/s10265-021-01323-2
CAS
Article
PubMed
Google Scholar
Tangkanakul P, Trakoontivakorn G, Auttaviboonkul P, Niyomvit B, Wongkrajang K (2006) Antioxidant activity of northern and northeastern Thai foods containing indigenous vegetables. Agric Nat Resour 40:47–58
CAS
Google Scholar
Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633. https://doi.org/10.1093/genetics/132.2.619
CAS
Article
PubMed
PubMed Central
Google Scholar
Thwaites GHK (1854) Description of some new genera and species of Ceylon plants. Hooker’s J Bot Kew Gard Misc 6:298–304
Google Scholar
Vergara D, White KH, Keepers KG, Kane NC (2016) The complete chloroplast genomes of Cannabis sativa and Humulus lupulus. Mitochondrial DNA A 27:3793–3794. https://doi.org/10.3109/19401736.2015.1079905
CAS
Article
Google Scholar
Volz SM, Renner SS (2008) Hybridization, polyploidy and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). Am J Bot 95:1297–1306. https://doi.org/10.3732/ajb.0800187
CAS
Article
PubMed
Google Scholar
Winter DJ (2012) MMOD: an R library for the calculation of population differentiation statistics. Mol Ecol Resour 12:1158–1160. https://doi.org/10.1111/j.1755-0998.2012.03174.x
CAS
Article
PubMed
Google Scholar
Won H (2019) Test of the hybrid origin of Broussonetia × kazinoki (Moraceae) in Korea using molecular markers. Korean J Plant Taxon 49:282–293. https://doi.org/10.11110/kjpt.2019.49.4.282
Article
Google Scholar
Wunderlin RP (1997) Moraceae Link—Mulberry Family. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 3. Oxford University Press, New York, pp 388–399
Google Scholar
Xu Z, Yang G, Dong M, Wu L, Zhang W, Zhao Y (2018) The complete chloroplast genome of an economic and ecological plant, paper mulberry (Broussonetia kazinoki × Broussonetia papyifera). Mitochondrial DNA Part B 3:28–29. https://doi.org/10.1080/23802359.2017.1419088
Article
Google Scholar
Yamazaki T (1989) Moraceae. In: Satake Y, Hara H, Watari S, Tominari T (eds) Wild flowers of Japan: woody plants. Heibonsha Ltd., Tokyo, pp 85–93 (In Japanese)
Google Scholar
Yun K-W, Kim M (2009) Taxnomic study of Broussonetia (Moraceae) in Korea. Korean J Pl Taxon 39:80–85
Article
Google Scholar
Zeder MA (2015) Core questions in domestication research. Proc Natl Acad Sci USA 112:3191–3198. https://doi.org/10.1073/pnas.1501711112
CAS
Article
PubMed
PubMed Central
Google Scholar
Zerega NJC, Gardner EM (2019) Delimitation of the new tribe Parartocarpeae (Moraceae) is supported by a 333-gene phylogeny and resolves tribal level Moraceae taxonomy. Phytotaxa 388:253–265. https://doi.org/10.11646/phytotaxa.388.4.1
Article
Google Scholar
Zha H-G, Milne RI, Sun H (2010) Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1s in Yunnan, China. Ann Bot 105:89–100. https://doi.org/10.1093/aob/mcp267
CAS
Article
PubMed
Google Scholar
Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951. https://doi.org/10.1093/pcp/pcg121
CAS
Article
PubMed
Google Scholar
Zhang SD, Soltis DE, Yang Y, Li DZ, Yi TS (2011) Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol Phylogenet Evol 60:21–28. https://doi.org/10.1016/j.ympev.2011.04.008
Article
PubMed
Google Scholar
Zhang S-D, Jin J-J, Chen S-Y, Chase MW, Soltis DE, Li H-T, Yang J-B, Li D-Z, Yi T-S (2017) Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol 214:1355–1367. https://doi.org/10.1111/nph.14461
CAS
Article
PubMed
Google Scholar
Zhang H-L, Jin J-J, Moore MJ, Yi T-S, Li D-Z (2018) Plastome characteristics of Cannabaceae. Plant Diversity 40:127–137. https://doi.org/10.1016/j.pld.2018.04.003
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Onstein RE, Little SA, Sauquet H (2019) Estimating divergence times and ancestral breeding systems in Ficus and Moraceae. Ann Bot 123:191–204. https://doi.org/10.1093/aob/mcy159
Article
PubMed
Google Scholar
Zhou Z, Gilbert MG (2003) Moraceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 5. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp 21–73
Google Scholar
Zuo L-H, Shang A-Q, Zhang S, Yu X-Y, Ren Y-C, Yang M-S, Wang J-M (2017) The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 12:e0171264. https://doi.org/10.1371/journal.pone.0171264
CAS
Article
PubMed
PubMed Central
Google Scholar