Skip to main content

Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha

Abstract

Cyclic AMP (cAMP) acts as a second messenger and is involved in the regulation of various physiological responses. Recently, we identified the cAMP-synthesis/hydrolysis enzyme CAPE, which contains the two catalytic domains adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) from the liverwort Marchantia polymorpha. Here we characterize the PDE domain of M. polymorpha CAPE (MpCAPE-PDE) using the purified protein expressed in E. coli. The Km and Vmax of MpCAPE-PDE were 30 µM and 5.8 nmol min−1 mg−1, respectively. Further, we investigated the effect of divalent cations on PDE activity and found that Ca2+ enhanced PDE activity, suggesting that Ca2+ may be involved in cAMP signaling through the regulation of PDE activity of CAPE. Among the PDE inhibitors tested, only dipyridamole moderately inhibited PDE activity by approximately 40% at high concentrations. Conversely, 3-isobutyl-1-methylxanthine (IBMX) did not inhibit PDE activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Baillie GS (2009) Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 276:1790–1799

    CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    CAS  PubMed  Google Scholar 

  • Bonini NM, Nelson DL (1988) Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J Cell Biol 106:1615–1623

    CAS  PubMed  Google Scholar 

  • Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buffone MG, Wertheimer EV, Visconti PE, Krapf D (2014) Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta 1842:2610–2620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    CAS  PubMed  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    CAS  PubMed  Google Scholar 

  • Conti M, Mika D, Richter W (2014) Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol 143:29–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MA, Robben TJ, Strik AM, Kuil C, Philipsen RL, van Duin M, Conti M, Gossen JA (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 101:2993–2998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273:15559–15564

    CAS  PubMed  Google Scholar 

  • Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91:651–690

    CAS  PubMed  Google Scholar 

  • Gancedo JM (2013) Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 88:645–668

    PubMed  Google Scholar 

  • Gehring C (2010) Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun Signal 8:15

    PubMed  PubMed Central  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol 41:145–174

    CAS  Google Scholar 

  • Hayashi M, Matsushima K, Ohashi H, Tsunoda H, Murase S, Kawarada Y, Tanaka T (1998) Molecular cloning and characterization of human PDE8B, a novel thyroid-specific isozyme of 3ʹ,5ʹ-cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 250:751–756

    CAS  PubMed  Google Scholar 

  • Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, Buck J, Moss SB (2005) The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 9:249–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huai Q, Liu Y, Francis SH, Corbin JD, Ke H (2004) Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol Chem 279:13095–13101

    CAS  PubMed  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    CAS  PubMed  Google Scholar 

  • Ishizaki K, Nishihama R, Yamato KT, Kohchi T (2016) Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol 57:262–270

    CAS  PubMed  Google Scholar 

  • Isner JC, Olteanu VA, Hetherington AJ, Coupel-Ledru A, Sun P, Pridgeon AJ, Jones GS, Oates M, Williams TA, Maathuis FJM, Kift R, Webb AR, Gough J, Franklin KA, Hetherington AM (2019) Short- and long-term effects of UVA on Arabidopsis are mediated by a novel cGMP phosphodiesterase. Curr Biol 29:2580–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal BS, Conti M (2003) Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa. Proc Natl Acad Sci USA 100:10676–10681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen V, Alvarez L, Balbach M, Strunker T, Hegemann P, Kaupp UB, Wachten D (2015) Controlling fertilization and cAMP signaling in sperm by optogenetics. Elife 4

  • Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C (2006) Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 362:623–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara M, Ohmori M (1999) Activation of a cyanobacterial adenylate cyclase, CyaC, by autophosphorylation and a subsequent phosphotransfer reaction. J Biol Chem 274:15167–15172

    CAS  PubMed  Google Scholar 

  • Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M, Takada Y, Okuda S, Nishiyama T, Sakayama H, Kohchi T, Takahashi F (2016) An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci Rep 6:39232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke H, Wang H (2007) Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Current Topic Medic Chemi 7:391–403

  • Kwiatkowski M, Wong A, Kozakiewicz-Piekarz A, Gehring C, Jaworski K (2021) In search of monocot phosphodiesterases: identification of a calmodulin stimulated phosphodiesterase from Brachypodium distachyon. Int J Mol Sci 22:9654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926

    CAS  PubMed  Google Scholar 

  • Loomis WF (2014) Cell signaling during development of Dictyostelium. Dev Biol 391:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmori M, Okamoto S (2004) Photoresponsive cAMP signal transduction in cyanobacteria. Photochem Photobiol Sci 3:503–511

    CAS  PubMed  Google Scholar 

  • Pasquale SM, Goodenough UW (1987) Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol 105:2279–2292

    CAS  PubMed  Google Scholar 

  • Ruzvidzo O, Gehring C, Wong A (2019) New perspectives on plant adenylyl cyclases. Front Mol Biosci 6:136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saegusa Y, Yoshimura K (2015) cAMP controls the balance of the propulsive forces generated by the two flagella of Chlamydomonas. Cytoskeleton 72:412–421

    CAS  PubMed  Google Scholar 

  • Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M (2007) Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol 130:99–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz JE, Klumpp S, Benz R, Schurhoff-Goeters WJ, Schmid A (1992) Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255:600–603

    CAS  PubMed  Google Scholar 

  • Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, Roditi I, Hill KL (2019) Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 10:803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1998) Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci USA 95:8991–8996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta 1842:2535–2547

    CAS  PubMed  Google Scholar 

  • Sutherland EW (1972) Studies on the mechanism of hormone action. Science 177:401–408

    CAS  PubMed  Google Scholar 

  • Terauchi K, Ohmori M (2004) Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 52:303–309

    CAS  PubMed  Google Scholar 

  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278:1907–1916

    CAS  PubMed  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    CAS  PubMed  Google Scholar 

  • Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    CAS  PubMed  Google Scholar 

  • Ullmann A, Danchin A (1983) Role of cyclic AMP in bacteria. Adv Cycl Nucl Res 15:1–53

    CAS  Google Scholar 

  • Wang H, Yan Z, Yang S, Cai J, Robinson H, Ke H (2008) Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochem 47:12760–12768

  • Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M, Conti M (2006) Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 296:353–362

    CAS  PubMed  Google Scholar 

  • Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288:1822–1825

    CAS  PubMed  Google Scholar 

  • Yamamoto C, Takahashi F, Ooe Y, Shirahata H, Shibata A, Kasahara M (2021) Distribution of adenylyl cyclase/cAMP phosphodiesterase gene, CAPE, in streptophytes reproducing via motile sperm. Sci Rep 11:10054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuasa K, Mi-Ichi F, Kobayashi T, Yamanouchi M, Kotera J, Kita K, Omori K (2005) PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum. Biochem J 392:221–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 18K06298 and 21K06236 to M.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kasahara.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 191 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayashida, Y., Yamamoto, C., Takahashi, F. et al. Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha. J Plant Res 135, 137–144 (2022). https://doi.org/10.1007/s10265-021-01359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01359-4

Keywords

  • Adenylyl cyclase
  • cAMP
  • CAPE
  • Marchantia polymorpha
  • Phosphodiesterase